KnigaRead.com/

Фрэнк Солтис - Основы AS/400

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Фрэнк Солтис - Основы AS/400". Жанр: Программное обеспечение издательство -, год -.
Перейти на страницу:

Основным мотивом создания архитектур CISC было желание сократить семантический разрыв между двоичным машинным языком процессора и ЯВУ, используемыми программистами. В двоичный машинный язык вводились команды, соответствующие инструкциям языка высокого уровня. Идея заключалась в том, чтобы процессор исполнял меньшее количество сложных команд, что позволило бы сэкономить память. К несчастью, машинные команды стали настолько сложны, что при создании практически любого процессора приходилось применять микропрограммирование. Накладные расходы микропрограммируемого эмулятора замедляли выполнение часто встречающихся простых команд. Кок доказывал, что при использовании только простых команд, необходимость в микропрограммировании отпадет, а все команды будут выполняться аппаратурой непосредственно. Более того, если бы стоимость памяти не была столь существенна, то компиляторы могли бы напрямую подставлять код для выполнения более сложных функций. Потребности в памяти увеличились бы, но возросла бы и производительность.

Дизайн процессора 801 был заимствован у суперкомпьютеров s самых быстродействующих ЭВМ. Хотя сам термин «суперкомпьютер» до середины 70-х годов не использовался, но конструкторы, стремившиеся раздвинуть пределы возможностей аппаратных технологий, были всегда. Невозможно говорить о суперкомпьютерах, не вспомнив о Сеймуре Крее (Seymour Cray). Если хотите, Крей и суперкомпьютер — это синонимы. Современные архитектуры RISC-процессоров многим обязаны этому первопроходцу[ 10 ].

Значительно повысить производительность процессоров позволил метод конвейерной обработки (pipelining). На протяжении уже многих лет эта технология используется при создании всех компьютеров, от ПК до больших ЭВМ. Суть ее — в параллельном исполнении фрагментов последовательных команд на разных этапах аппаратного конвейера. Первый компьютер общего назначения, использовавший конвейерную обработку, появился еще в 1961 году. Это был IBM 7030, известный также под названием Stretch.

Рисунок 2.1а Конвейерный скалярный процессор — пятиэтапный конвейер команд.


Пример пятиэтапного конвейера команд показан на рисунке 2.1а. Время, необходимое для выполнения каждого этапа выполнения команды, называется временем цикла процессора (processor cycle time).

На рисунке 2.1б показана временная диаграмма пятиэтапного конвейера. В течение первого цикла процессора команда № 1 выбирается из буфера команд аппаратурой первого этапа конвейера. В течение второго цикла команда № 1 декодируется, и содержимое необходимых регистров считывается аппаратурой второго этапа. В то же самое время, аппаратура первого этапа считывает из буфера команд команду № 2. Теперь аппаратура разных стадий конвейера параллельно обрабатывает разные части двух разных команд. Благодаря такому параллелизму и достигается повышенная производительность процессоров с конвейерной обработкой. Обратите внимание: предполагается, что некоторая другая часть аппаратуры процессора обеспечивает заполнение буфера команд.

Рисунок 2.1b Пример временной диаграммы


В течение третьего процессорного цикла команда № 1 поступает на стадию выполнения и вычисления эффективного адреса (стадия 3), команда № 2 поступает на стадию 2, а команда № 3 s на стадию 1. Процесс продолжается вплоть до завершения пятого цикла процессора, когда выполнение команды: № 1 заканчивается и она покидает конвейер. Таким образом, выполнение каждой отдельной команды занимает полные пять циклов, но после того, как конвейер заполнен, на каждом цикле процессора завершается выполнение одной команды. Когда говорят, что для выполнения одной команды необходим один цикл процессора, подразумевается, что конвейер заполнен, что, понятно, близко к идеалу[ 11 ].

В начале 60-х годов Сеймур Крей в Control Data Corporation разрабатывал первый в мире суперкомпьютер — CDC 6600. Он планировал использовать конвейерную обработку и добивался, чтобы время выполнения всех команд было одинаковым. Ведь, как видно из приведенного примера, общее время выполнения команд определяется командой, имеющей самое большое время выполнения. Команды, выбирающие операнды из памяти или записывающие их в память, обычно выполняются дольше остальных. Если эти, работающие с памятью, команды выполняют также и логические или арифметические действия над данными, то время выполнения может стать очень большим.

Чтобы максимально сократить общее время выполнения команд, Крей решил, что в его процессоре единственными операциями с памятью будут загрузка в регистр содержимого памяти по некоторому адресу и сохранение содержимого регистра по некоторому адресу в памяти. Любые действия над данными должны производиться только в регистрах.

Тогда это было очень непривычно: ведь большинство других компьютеров позволяли выполнять операции над данными в памяти без использования регистров. Например, команды S/360 позволяют сложить два находящихся в памяти операнда и записать сумму обратно в память. Эта операция занимает очень много времени, но выполняется одной машинной командой. Команды данного типа называются командами память-память.

Для выполнения той же самой операции на машине Крея потребовалось бы пять команд. Сначала две команды загрузки поместили бы данные в два регистра. Затем команда сложения просуммировала бы содержимое этих регистров и поместила бы результат обратно в регистр. И, наконец, команда сохранения переписала бы сумму из регистра в память[ 12 ]. Но если эффективно поместить все эти пять команд на конвейер и выполнять их параллельно, то общее необходимое для этого время будет меньше времени, необходимого для выполнения эквивалентной операции на машине с командами типа память-память. И все же большее число команд, требуемых для выполнения операции, было недостатком машины Крея.

В 1964 году появилась CDC 6600 s первая машина общего назначения с архитектурой загрузка/сохранение (load/store). Крей осознал связь между конвейерной обработкой и архитектурой набора команд, и это привело его к выводу о необходимости упрощения этой архитектуры для повышения эффективности конвейера. Современные RISC-процессоры используют подход Сеймура Крея — в них команды, работающие с памятью, выполняют только загрузку и сохранение. Вот почему RISC-машины быстрее CISC-машин с полным набором команд для работы с памятью. По той же причине и программы, скомпилированные для RISC, больше по размеру.

Вклад Сеймура Крея в разработку высокопроизводительных конвейеров не ограничивается только архитектурой набора команд. В CDC 6600 он применил аппаратуру, которая обеспечивала максимум производительности путем максимально возможной загрузки конвейера, то есть ситуацию, при которой на каждой его стадии выполняется часть некоторой команды. В реальности, между командами в программах существуют зависимости. Если команда на конвейере использует данные, которые сохраняются командой, идущей по конвейеру непосредственно впереди нее, то в определенный момент эти данные могут быть еще недоступны, что не только вызывает простой конвейера, но и останавливает выполнение всех последующих команд. Тем самым уменьшается производительность процессора.

В CDC 6600 было впервые реализовано оборудование, позволяющее процессору просматривать команды, расположенные далее в потоке команд, и определять, могут ли они быть запущены перед той, что ожидает сохранения результата. Идея аппаратного переупорядочивания команд на конвейере, известная как динамическое планирование (dynamic scheduling), служила поддержанию максимально возможной его загрузки и значительно повысила производительность CDC 6600.

В суперкомпьютерах 60-х была реализована и идея предсказания переходов. Команда перехода может разрушить конвейер. Вызванный ею простой затянется до тех пор, пока система не будет в состоянии решить, какая команда должна выполняться следующей. Идея предсказания переходов состоит в том, чтобы на основе опыта угадать, откуда следует выбирать команду, следующую после команды перехода. Использованное в IBM 360/91 сложное аппаратное обеспечение предсказания переходов позволило достичь отличных результатов.

360/91 обладала еще одной интересной аппаратной особенностью. Опираясь на ее опыт, Боб Томасуло (Bob Tomasulo), инженер IBM, усовершенствовал алгоритм Крея, созданный несколькими годами ранее, и создал новый алгоритм динамического планирования. Реализованный аппаратно, алгоритм Томасуло устранил многие случаи простоя конвейера путем выполнения команд не по порядку их следования. Команда, которая должна ожидать получения некоторого результата, более не останавливает команды, следующие за ней. Алгоритм Томасуло требовал невероятно сложной по тем временам аппаратуры, но на деле позволял достичь желаемого роста производительности.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*