KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Программирование » Иван Братко - Программирование на языке Пролог для искусственного интеллекта

Иван Братко - Программирование на языке Пролог для искусственного интеллекта

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Иван Братко, "Программирование на языке Пролог для искусственного интеллекта" бесплатно, без регистрации.
Перейти на страницу:

• Мы получаем ответ "да" или "нет", но не получаем решающее дерево. Можно было бы восстановить решающее дерево при помощи трассировки программы, но такой способ неудобен, да его и недостаточно, если мы хотим иметь возможность явно обратиться к решающему дереву как к объекту программы.

• В эту программу трудно вносить добавления, связанные с обработкой стоимостей.

• Если наш И/ИЛИ-граф — это граф общего вида, содержащий циклы, то пролог-система, следуя стратегии в глубину, может войти в бесконечный рекурсивный цикл.

Попробуем постепенно исправить эти недостатки. Сначала определим нашу собственную процедуру поиска в глубину для И/ИЛИ-графов.

Прежде всего мы должны изменить представление И/ИЛИ-графов. С этой целью введём бинарное отношение, изображаемое инфиксным оператором '--->'. Например, вершина а с двумя ИЛИ-преемниками будет представлена предложением

а ---> или : [b, с].

Оба символа '--->' и ':' — инфиксные операторы, которые можно определить как

:- op( 600, xfx, --->).

:- op( 500, xfx, :).

Весь И/ИЛИ-граф рис. 13.4 теперь можно задать при помощи множества предложений

а ---> или : [b, с].

b ---> и : [d, e].

с ---> и : [f, g].

e ---> или : [h].

f ---> или : [h, i].

цель( d). цель( g). цель( h).

Процедуру поиска в глубину в И/ИЛИ-графах можно построить, базируясь на следующих принципах:

Для того, чтобы решить задачу вершины В, необходимо придерживаться приведенных ниже правил:

(1) Если  В — целевая вершина, то задача решается тривиальным образом.

(2) Если вершина В имеет ИЛИ-преемников, то нужно решить одну из соответствующих задач-преемников (пробовать решать их одну за другой, пока не будет найдена задача, имеющая решение).

(3) Если вершина В имеет И-преемников, то нужно решить все соответствующие задачи (пробовать решать их одну за другой, пока они не будут решены все).

Если применение этих правил не приводит к решению, считать, что задача не может быть решена.

Соответствующая программа выглядит так:

решить( Верш) :-

 цель( Верш).

решить( Верш) :-

 Верш ---> или : Вершины, % Верш - ИЛИ-вершина

 принадлежит( Верш1, Вершины),

  % Выбор преемника  Верш1  вершины  Верш

 решить( Bepш1).

решить( Верш) :-

 Верш ---> и : Вершины,   % Верш - И-вершина

 решитьвсе( Вершины).

  % Решить все задачи-преемники


решитьвсе( []).

решитьвсе( [Верш | Вершины]) :-

 решить( Верш),

 решитьвсе( Вершины).

Здесь принадлежит — обычное отношение принадлежности к списку.

Эта программа все еще имеет недостатки:

• она не порождает решающее дерево, и

• она может зацикливаться, если И/ИЛИ-граф имеет соответствующую структуру (циклы).

Программу нетрудно изменить с тем, чтобы она порождала решающее дерево. Необходимо так подправить отношение решить, чтобы оно имело два аргумента:

решить( Верш, РешДер).

Решающее дерево представим следующим образом. Мы имеем три случая:

(1) Если Верш — целевая вершина, то соответствующее решающее дерево и есть сама эта вершина.

(2) Если Верш — ИЛИ-вершина, то решающее дерево имеет вид

Верш ---> Поддерево

где Поддерево — это решающее дерево для одного из преемников вершины Верш.

(3) Если Верш — И-вершина, то решающее дерево имеет вид

Верш ---> и : Поддеревья

где Поддеревья — список решающих деревьев для всех преемников вершины Верш.


% Поиск в глубину для И/ИЛИ-графов

% Процедура решить( Верш, РешДер) находит решающее дерево для

% некоторой вершины в И / ИЛИ-графе

решить( Верш, Верш) :-    % Решающее дерево для целевой

 цель( Верш).             % вершины - это сама вершина

решить( Верш, Верш ---> Дер) :-

 Верш ---> или : Вершины, % Верш - ИЛИ-вершина

 принадлежит( Верш1, Вершины),

  % Выбор преемника  Верш1  вершины  Верш

 решить( Bepш1, Дер).

решить( Верш, Верш ---> и : Деревья) :-

 Верш ---> и : Вершины,   % Верш - И-вершина

 решитьвсе( Вершины, Деревья).

  % Решить все задачи-преемники


решитьвсе( [], []).

решитьвсе( [Верш | Вершины], [Дер | Деревья]) :-

 решить( Верш, Дер),

 решитьвсе( Вершины, Деревья).


отобр( Дер) :-            % Отобразить решающее дерево

 отобр( Дер, 0), !.       % с отступом 0

отобр( Верш ---> Дер, H) :-

  % Отобразить решающее дерево с отступом H

 write( Верш), write( '--->'),

 H1 is H + 7,

 отобр( Дер, H1), !.

отобр( и : [Д], H) :-

  % Отобразить И-список решающих деревьев

 отобр( Д, H).

отобр( и : [Д | ДД], H) :-

  % Отобразить И-список решающих деревьев

 отобр( Д, H),

 tab( H),

 отобр( и : ДД, H), !.

отобр( Верш, H) :-

 write( Верш), nl.

Рис. 13.8. Поиск в глубину для И/ИЛИ-графов. Эта программа может зацикливаться. Процедура решить находит решающее дерево, а процедура отобр показывает его пользователю. В процедуре отобр предполагается, что на вывод вершины тратится только один символ.


Например, при поиске в И/ИЛИ-графе рис. 13.4 первое найденное решение задачи, соответствующей самой верхней вершине а, будет иметь следующее представление:

а ---> b ---> и : [d, c ---> h]

Три формы представления решающего дерева соответствуют трем предложениям отношения решить. Поэтому все, что нам нужно сделать для изменения нашей исходной программы решить, — это подправить каждое из этих трех предложений, просто добавив в каждое из них решающее дерево в качестве второго аргумента. Измененная программа показана на рис. 13.8. В нее также введена дополнительная процедура отобр для отображения решающих деревьев в текстовой форме. Например, решающее дерево рис. 13.4 будет отпечатано процедурой отобр в следующем виде:

а ---> b ---> d

              e ---> h

Программа рис. 13.8 все еще сохраняет склонность к вхождению в бесконечные циклы. Один из простых способов избежать бесконечных циклов — это следить за текущей глубиной поиска и не давать программе заходить за пределы некоторого ограничения по глубине. Это можно сделать, введя в отношение решить еще один аргумент:

решить( Верш, РешДер, МаксГлуб)

Как и раньше, вершиной Верш представлена решаемая задача, а РешДер — это решение этой задачи, имеющее глубину, не превосходящую МаксГлуб. МаксГлуб — это допустимая глубина поиска в графе. Если МаксГлуб = 0, то двигаться дальше запрещено, если же МаксГлуб > 0, то поиск распространяется на преемников вершины Верш, причем для них устанавливается меньший предел по глубине, равный МаксГлуб-1. Это дополнение легко ввести в программу рис. 13.8. Например, второе предложение процедуры решить примет вид:

решить( Верш, Верш ---> Дер, МаксГлуб) :-

 МаксГлуб > 0,

 Верш ---> или : Вершины, % Верш - ИЛИ-вершина

 принадлежит ( Верш1, Вершины),

  % Выбор преемника  Верш1  вершины  Верш

 Глуб1 is МаксГлуб - 1,   % Новый предел по глубине

 решить( Bepш1, Дер, Глуб1).

  % Решить задачу-преемник с меньшим ограничением

Нашу процедуру поиска в глубину с ограничением можно также использовать для имитации поиска в ширину. Идея состоит в следующем: многократно повторять поиск в глубину каждый раз все с большим значением ограничения до тех пор, пока решение не будет найдено, То есть попробовать решить задачу с ограничением по глубине, равным 0, затем — с ограничением 1, затем — 2 и т.д. Получаем следующую программу:

имитация_в_ширину( Верш, РешДер) :-

 проба_в_глубину( Верш, РешДер, 0).

  % Проба поиска с возрастающим ограничением, начиная с 0


проба_в_глубину( Верш, РешДер, Глуб) :-

 решить( Верш, РешДер, Глуб);

 Глуб1 is Глуб + 1, % Новый предел по глубине

 проба_в_глубину( Верш, РешДер, Глуб1).

  % Попытка с новым ограничением

Недостатком имитации поиска в ширину является то, что при каждом увеличении предела по глубине программа повторно просматривает верхнюю область пространства поиска.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*