KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Программирование » Иван Братко - Программирование на языке Пролог для искусственного интеллекта

Иван Братко - Программирование на языке Пролог для искусственного интеллекта

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Иван Братко, "Программирование на языке Пролог для искусственного интеллекта" бесплатно, без регистрации.
Перейти на страницу:

вглубину( Путь, Верш, Решение)

Как видно из рис. 11.6, Верш — это состояние, из которого необходимо найти путь до цели; Путь — путь (список вершин) между стартовой вершиной и Верш; Решение — Путь, продолженный до целевой вершины.

Рис. 11.6. Отношение вглубину( Путь, В, Решение).

Для облегчения программирования вершины в списках, представляющих пути, будут расставляться в обратном порядке. Аргумент Путь нужен для того,

(1) чтобы не рассматривать тех преемников вершины Верш, которые уже встречались раньше (обнаружение циклов);

(2) чтобы облегчить построение решающего пути Решение. Соответствующая программа поиска в глубину показана на рис. 11.7.


решить( Верш, Решение) :-

 вглубину( [], Верш, Решение).


вглубину( Путь, Верш, [Верш | Путь] ) :-

 цель( Верш).

вглубину( Путь, Верш, Реш) :-

 после( Верш, Верш1),

 not принадлежит( Верш1, Путь), % Цикл?

 вглубину( [Верш | Путь], Верш1, Реш).

Рис. 11.7. Программа поиска в глубину без зацикливания.


Теперь наметим один вариант этой программы. Аргументы Путь и Верш процедуры вглубину можно объединить в один список [Верш | Путь]. Тогда, вместо вершины-кандидата Верш, претендующей на то, что она находится на пути, ведущем к цели, мы будем иметь путь-кандидат П = [Верш | Путь], который претендует на то, что его можно продолжить вплоть до целевой вершины. Программирование соответствующего предиката

вглубину( П, Решение)

оставим читателю в качестве упражнения.

Наша процедура поиска в глубину, снабженная механизмом обнаружения циклов, будет успешно находить решающие пути в пространствах состояний, подобных показанному на рис. 11.5. Существуют, однако, такие пространства состоянии, в которых наша процедура не дойдет до цели. Дело в том, что многие пространства состояний бесконечны. В таком пространстве алгоритм поиска в глубину может "потерять" цель, двигаясь вдоль бесконечной ветви графа. Программа будет бесконечно долго обследовать эту бесконечную область пространства, так и не приблизившись к цели. Пространство состояний задачи о восьми ферзях, определенное так, как это сделано в настоящем разделе, на первый взгляд содержит ловушку именно такого рода. Но оказывается, что оно все-таки конечно, поскольку Y-координаты выбираются из ограниченного множества, и поэтому на доску можно поставить "безопасным образом" не более восьми ферзей.


вглубину2( Верш, [Верш], _ ) :-

 цель( Верш).

вглубину2( Верш, [Верш | Реш], МаксГлуб) :-

 МаксГлуб > 0,

 после( Верш, Верш1),

 Maкс1 is МаксГлуб - 1,

 вглубину2( Верш1, Реш, Maкс1).

Рис. 11.8. Программа поиска в глубину с ограничением по глубине.


Для того, чтобы предотвратить бесцельное блуждание по бесконечным ветвям, мы можем добавить в базовую процедуру поиска в глубину еще одно усовершенствование, а именно, ввести ограничение на глубину поиска. Процедура поиска в глубину будет тогда иметь следующие аргументы:

вглубину2( Верш, Решение, МаксГлуб)

Не разрешается вести поиск на глубине большей, чем МаксГлуб. Программная реализация этого ограничения сводится к уменьшению на единицу величины предела глубины при каждом рекурсивном обращений к вглубину2 и к проверке, что этот предел не стал отрицательным. В результате получаем программу, показанную на рис. 11.8.

Упражнения

11.1. Напишите процедуру поиска в глубину (с обнаружением циклов)

вглубину1( ПутьКандидат, Решение)

отыскивающую решающий путь Решение как продолжение пути ПутьКандидат. Оба пути представляйте списками вершин, расположенных в обратном порядке так, что целевая вершина окажется в голове списка Решение.

11.2. Напишите процедуру поиска в глубину, сочетающую в себе обнаружение циклов с ограничением глубины, используя рис. 11.7 и 11.8.

11.3. Проведите эксперимент по применению программы поиска в глубину к задаче планирования в "мире кубиков" (рис. 11.1).

11.4. Напишите процедуру

отобр( Ситуация)

для отображения состояния задачи "перестановки кубиков". Пусть Ситуация — это список столбиков, а столбик, в свою очередь, — список кубиков. Цель

отобр( [ [a], [e, d], [с, b] ] )

должна отпечатать соответствующую ситуацию, например так:

      e      с

a     d      b

==============

11.3. Поиск в ширину

В противоположность поиску в глубину стратегия поиска в ширину предусматривает переход в первую очередь к вершинам, ближайший к стартовой вершине. В результате процесс поиска имеет тенденцию развиваться более в ширину, чем в глубину, что иллюстрирует рис. 11.9.

Рис. 11.9. Простое пространство состояний: а — стартовая вершина, f и j — целевые вершины. Применение стратегии поиска в ширину дает следующий порядок прохода по вершинам: а, b, c, d, e, f. Более короткое решение [a, c, f] найдено раньше, чем более длинное [а, b, e, j]

Поиск в ширину программируется не так легко, как поиск в глубину. Причина состоят в том, что нам приходится сохранять все множество альтернативных вершин-кандидатов, а не только одну вершину, как при поиске в глубину. Более того, если мы желаем получить при помощи процесса поиска решающий путь, то одного множества вершин недостаточно. Поэтому мы будем хранить не множество вершин-кандидатов, а множество путей-кандидатов. Таким образом, цель

вширину( Пути, Решения)

истинна только тогда, когда существует путь из множества кандидатов Пути, который может быть продолжен вплоть до целевой вершины. Этот продолженный путь и есть Решение.

11.3.1. Списковое представление множества кандидатов

В нашей первой реализации этой идеи мы будем использовать следующее представление для множества путей-кандидатов. Само множество будет списком путей, а каждый путь - списком вершин, перечисленных в обратном порядке, т.е. головой списка будет самая последняя из порожденных вершин, а последним элементом списка будет стартовая вершина. Поиск начинается с одноэлементного множества кандидатов

[ [СтартВерш] ]


решить( Старт, Решение) :-

 вширину( [ [Старт] ], Решение).


вширину( [ [Верш | Путь] | _ ], [Верш | Путь] ) :-

 цель( Верш).

вширину( [ [В | Путь] | Пути], Решение ) :-

 bagof( [B1, В | Путь ],

 ( после( В, В1), not принадлежит( В1, [В | Путь])),

   НовПути),

    % НовПути - ациклические продолжения пути [В | Путь]

 конк( Пути, НовПути, Пути1), !,

 вширину( Путь1, Решение);

 вширину( Пути, Решение).

  % Случай, когда у В нет преемника

Рис. 11.10. Реализации поиска в ширину.

Общие принципы поиска в ширину таковы:

Для того, чтобы выполнить поиск в ширину при заданном множестве путей-кандидатов, нужно:

• если голова первого пути — это целевая вершина, то взять этот путь в качестве решения, иначе

• удалить первый путь из множества кандидатов и породить множество всех возможных продолжений этого пути на один шаг; множество продолжений добавить в конец множества кандидатов, а затем выполнить поиск в ширину с полученным новым множеством.


решить( Старт, Решение) :-

 вширь( [ [Старт] | Z ]-Z, Решение).


вширь( [ [Верш | Путь] | _ ]-_, [Верш | Путь] ) :-

 цель( Верш).

вширь( [ [В | Путь] | Пути]-Z, Решение ) :-

 bagof( [B1, В | Путь ],

 ( после( В, В1),

   not принадлежит( В1, [В | Путь]) ),

   Нов ),

 конк( Нов, ZZ, Z), !,

 вширь( Пути-ZZ, Решение);

 Пути == Z, % Множество кандидатов не пусто

 вширь( Пути-Z, Решение).

Рис. 11.11. Программа поиска в ширину более эффективная, чем программа рис. 11.10. Усовершенствование основано на разностном представлении списка путей-кандидатов.


В случае примера рис.11.9 этот процесс будет развиваться следующим образом:

(1) Начинаем с начального множества кандидатов:

[ [а] ]

(2) Порождаем продолжения пути [а]:

[ [b, а], [с, а] ]

(Обратите внимание, что пути записаны в обратном порядке.)

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*