Джонсон Харт - Системное программирование в среде Windows
Число возможных кодов исключений, возвращаемых функцией GetExceptionCode, очень велико, однако их можно разделить на несколько категорий.
• Выполнение программой некорректных действий, например:
EXCEPTION_ACCESS_VIOLATION — попытка чтения или записи по адресу виртуальной памяти, к которой процесс не имеет доступа.
EXCEPTION_DATATYPE_MISALIGNMENT — многие процессоры, например, требуют чтобы данные типа DWORD выравнивались по четырехбайтовым границам.
EXCEPTION_NONCONTINUABLE_EXECUTION — значением выражения фильтра было EXCEPTION_CONTINUE_EXECUTION, но выполнения программы после возникновения исключения не может быть продолжено.
• Исключения, сгенерированные функциями распределения памяти НеарAlloc и HeapCreate, если они используют флаг HEAP_GENERATE_EXCEPTIONS (см. главу 5). Соответствующими значениями кода исключения являются STATUS_NO_MEMORY или EXCEPTION_ACCESS_VIOLATION.
• Коды определенных пользователем исключений, генерируемых путем вызова функции RaiseException, о чем говорится в подразделе "Исключения, генерируемые приложением".
• Коды различных арифметических исключений (особенно FP-исключений), например, EXCEPTION_INT_DIVIDE_BY_ZERO или EXCEPTION_FLT_OVERFLOW.
• Исключения, используемые отладчиками, например, EXCEPTION_BREAKPOINT или EXCEPTION_SINGLE_STEP.
Вам пригодится также функция GetExceptionInformation, которая может быть вызвана только из выражения фильтра и возвращает дополнительную информацию, включая информацию, специфическую для используемого процессора.
LPEXCEPTION_POINTERS GetExceptionINFORMATION(VOID)
Вся информация, как относящаяся, так и не относящаяся к процессору, содержится в структуре EXCEPTION_POINTERS, состоящей из двух других структур.
typedef struct _EXCEPTION_POINTERS {
PEXCEPTION_RECORD ExceptionRecord;
PCONTEXT ContextRecord;
} EXCEPTION POINTERS;
В структуру EXCEPTION_RECORD входит элемент ExceptionCode, набор возможных значений которого совпадает с набором значений, возвращаемых функцией GetExceptionCode. Элемент ExceptionFlags структуры EXCEPTION_RECORD может принимать значения 0 или EXCEPTION_NONCONTINUABLE, причем последнее значение указывает функции фильтра на то, что она не должна предпринимать попыток продолжения выполнения. К числу других элементов данных этой структуры относятся адрес виртуальной памяти ExceptionAddress и массив параметров ExceptionInformation. В случае исключения EXCEPTION_ACCESS_VIOLATION значение первого элемента этого массива указывает на то, какая именно из операций пыталась получить доступ по недоступному адресу — записи (1) или чтения (0). Второй элемент содержит адрес виртуальный памяти.
Во втором элементе структуры EXCEPTION_POINTERS, а именно, элементе ContextRecord, содержится информация, относящаяся к процессору. Для каждого типа процессоров предусмотрены свои структуры, определения которых содержатся в файле <winnt.h>.
Резюме: последовательность обработки исключений
На рис. 4.2 в схематическом виде представлена последовательность событий, происходящих после возникновении исключения. Слева приведен программный код, а обведенные кружками цифры справа обозначают операции, выполняемые языковыми средствами поддержки времени выполнения. Отдельные элементы приведенной схемы имеют следующий смысл:
1. Возникло исключение; в данном случае это деление на ноль.
2. Управление передается обработчику исключений, в котором вычисляется выражение фильтра. Сначала вызывается функция GetExceptionCode, а затем ее возвращаемое значение используется в качестве аргумента функции Filter.
3. Функция фильтра выполняет действия, определяемые значением кода исключения.
4. В данном случае значением кода исключения является EXCEPTION_INT_DIVIDE_BY_ZERO.
5. Функция фильтра устанавливает, что должен быть выполнен код обработчика исключений, и поэтому возвращает значение EXCEPTION_EXECUTE_HANDLER.
6. Выполняется код обработчика исключений, связанного с оператором _except.
7. Управление передается за пределы блоков try и except.
Рис. 4.2. Последовательность операций при обработке исключений
Исключения, возникающие при выполнении операций над числами с плавающей точкой
Существует семь различных кодов исключений, которые могут возникать при выполнении операций с использованием данных вещественного типа. Первоначально эти исключения отключены и не могут возникать до тех пор, пока с помощью функции _controlfp для них не будет предварительно задана специальная маска, не зависящая от типа процессора. Предусмотрены отдельные исключения для ситуаций антипереполнения, переполнения, деления на ноль, неточного результата и так далее, что иллюстрируется приведенным ниже фрагментом кода. Для активизации исключений определенного типа следует отключить соответствующий бит маски.
DWORD _controlfp(DWORD new, DWORD mask)
Фактическое значение маски определяется ее текущим значением (current_mask) и двумя аргументами следующим образом:
(current_mask & ~mask) | (new & mask)
Данная функция устанавливает лишь те из битов, указанных в аргументе new, которые разрешены аргументом mask. Биты, не активизированные аргументом mask, не изменяются. Маска FP-исключений управляет также точностью, округлением и обработкой значений, соответствующих бесконечности, поэтому при активизации перечисленных исключений необходимо тщательно следить за тем, чтобы случайно не изменить эти установки.
Возвращаемым значением является фактическое значение маски. Так, при нулевых значениях обоих аргументов возвращаемым значением будет текущее значение маски (current_mask), что может быть использовано для восстановления маски, если впоследствии в этом возникнет необходимость. С другой стороны, если задать аргумент mask равным 0xFFFFFFFF, то регистр установится в new, что, например, может быть использовано для восстановления прежнего значения маски.
Обычно для того, чтобы разрешить исключения, связанные с выполнением операций над числами с плавающей точкой, в качестве аргумента mask используют константу MCW_EM, как продемонстрировано в следующем примере. Также заметьте, что при обработке FP-исключения оно должно быть сброшено путем использования функции _clearfp.
#include <float.h>
DWORD FPOld, FPNew; /* Старое и новое значения маски. */
…
FPOld = _controlfp(0, 0); /* Сохранить старую маску. */
/* Указать в качестве разрешенных шесть типов исключений. */
FPNew = FPOld & ~(EM_OVERFLOW | EM_UNDERFLOW | EM_INEXACT | EM_ZERODIVIDE | EM_DENORMAL | EM_INVALID);
/* Установить новую управляющую маску. Параметр MCW_EM объединяет шесть исключений, указанных в предыдущем операторе. */
_controlfp(FPNew, MCW_EM);
while(…) __try { /* Выполнить вычисления над числами с плавающей точкой. */
… /* На этом участке кода может возникнуть FP-исключение. */
} __except(EXCEPTION_EXECUTE_HANDLER) {
… /* Обработать FP-исключение. */
_clearfp(); /* Сбросить исключение. */
_controlfp(FPOld, 0xFFFFFFFF); /* Восстановить маску. */
}
В этом примере разрешены все возможные FP-исключения, кроме одного — EXCEPTION_FLT_STACK_CHECK, которое соответствует переполнению стека при выполнении операций над числами с плавающей точкой. Можно поступить и по-другому, разрешая отдельные исключения путем использования только выбранных масок исключений, например EM_OVERFLOW. Аналогичный код используется в программе 4.3 в контексте примера программного кода большего объема.
Ошибки и исключения
Под ошибками понимаются исключительные ситуации, которые время от времени могут возникать в известных местах программы. Так, обнаружение ошибок, возникающих во время выполнения системных вызовов, и немедленный вывод сообщений о них должны предусматриваться логикой работы самой программы. Поэтому программисты, как правило, явно включают в программный код участки, ответственные, например, за тестирование успешности завершения операции чтения данных из файла. В главе 2 для диагностики ошибок и принятия соответствующих мер была разработана функция ReportError.
С другой стороны, исключения могут возникать практически в любом месте программы, и поэтому организация явной проверки всех исключений невозможна или практически нецелесообразна. Примерами подобных ситуаций могут служить попытки деления на ноль или обращения к недоступным областям памяти.
Вместе с тем, указанные различия между ошибками и исключениями являются довольно условными. Windows позволяет управлять генерацией исключений, возникающих в случае нехватки памяти при ее распределении с использованием функций НеарАllос и HeapCreate. Этот процесс описан в главе 5. Помимо этого, программы могут генерировать собственные исключения с кодами, определяемыми программистом, используя для этого функцию RaiseException, о чем далее будет говориться.
Обработчики исключений обеспечивают удобный механизм выхода из внутренних блоков или функций под управлением программы без использования операторов перехода goto или longjmp. Такая возможность оказывается особенно полезной, если блок получил доступ к таким, например, ресурсам, как открытые файлы, память или объекты синхронизации, поскольку обработчик может взять на себя задачу освобождения этих ресурсов. Возможно также продолжение работы программы после выполнения кода обработчика исключений, а не ее обязательное завершение. Кроме того, после выхода из блока программа может восстанавливать прежнее состояние системы, например маску FP-исключений. Именно в этом ключе обработчики используются во многих наших примерах.