Герб Саттер - Стандарты программирования на С++. 101 правило и рекомендация
Открытая виртуальная функция по своей природе решает две различные параллельные задачи.
• Она определяет интерфейс. Будучи открытой, такая функция является непосредственной частью интерфейса класса, предоставленного внешнему миру.
• Она определяет детали реализации. Будучи виртуальной, функция предоставляет производному классу возможность заменить базовую реализацию этой функции (если таковая имеется), в чем и состоит цель настройки.
В связи с существенным различием целей этих двух задач, они могут конфликтовать друг с другом (и зачастую так и происходит), так что одна функция не в состоянии в полной мере решить одновременно две задачи. То, что перед открытой виртуальной функцией ставятся две существенно различные задачи, является признаком недостаточно хорошего разделения зон ответственности и по сути нарушения рекомендаций 5 и 11, так что нам следует рассмотреть иной подход к проектированию.
Путем разделения открытых функций от виртуальных мы достигаем следующих значительных преимуществ.
• Каждый интерфейс может приобрести свой естественный вид. Когда мы разделяем открытый интерфейс от интерфейса настройки, каждый из них может легко приобрести тот вид, который для него наиболее естественен, не пытаясь найти компромисс, который заставит их выглядеть идентично. Зачастую эти два интерфейса требуют различного количества функций и/или различных параметров; например, внешняя вызывающая функция может выполнить вызов одной открытой функции Process, которая выполняет логическую единицу работы, в то время как разработчик данного класса может предпочесть перекрыть только некоторые части этой работы, что естественным образом моделируется путем независимо перекрываемых виртуальных функций (например, DoProcessPhase1, DoProcessPhase2), так что производному классу нет необходимости перекрывать их все (точнее говоря, данный пример можно рассматривать как применение шаблона проектирования Template Method).
• Управление базовым классом. Теперь базовый класс находится под полным контролем своего интерфейса и стратегии и может обеспечить пост- и предусловия интерфейса (см. рекомендации 14 и 68), причем выполнить всю эту работу в одном удобном повторно используемом месте — невиртуальной функции интерфейса. Такое "предварительное разложение" обеспечивает лучший дизайн класса.
• Базовый класс более устойчив к изменениям. Мы можем позже изменить наше мнение и добавить некоторую проверку пост- или предусловий, или разделить выполнение работы на большее количество шагов или переделать ее, реализовать более полное разделение интерфейса и реализации с использованием идиомы Pimpl (см. рекомендацию 43), или внести иные изменения в базовый класс, и все это никак не повлияет на код, использующий данный класс или наследующий его. Заметим, что гораздо проще начать работу с использования NVI (даже если открытые функции представляют собой однострочные вызовы соответствующих виртуальных функций), а уже позже добавлять все проверки и инструментальные средства, поскольку эта работа никак не повлияет на код, использующий или наследующий данный класс. Ситуация окажется существенно сложнее, если начать с открытых виртуальных функций и позже изменять их, что неизбежно приведет к изменениям либо в коде, который использует данный класс, либо в наследующем его.
См. также рекомендацию 54.
ИсключенияNVI не применим к деструкторам в связи со специальным порядком их выполнения (см. рекомендацию 50).
NVI непосредственно не поддерживает ковариантные возвращаемые типы. Если вам требуется ковариантность, видимая вызывающему коду без использования dynamic_cast (см. также рекомендацию 93), проще сделать виртуальную функцию открытой.
Ссылки[Allison98] §10 • [Dewhurst03] §72 • [Gamma95] • [Keffer95 pp. 6-7] • [Koenig97] §11 • [Sutter00] §19, §23 • [Sutter04] §18
40. Избегайте возможностей неявного преобразования типов
Не все изменения прогрессивны: неявные преобразования зачастую приносят больше вреда, чем пользы. Дважды подумайте перед тем, как предоставить возможность неявного преобразования к типу и из типа, который вы определяете, и предпочитайте полагаться на явные преобразования (используйте конструкторы, объявленные как explicit, и именованные функции преобразования типов).
ОбсуждениеНеявные преобразования типов имеют две основные проблемы.
• Они могут проявиться в самых неожиданных местах.
• Они не всегда хорошо согласуются с остальными частями языка программирования.
Неявно преобразующие конструкторы (конструкторы, которые могут быть вызваны с одним аргументом и не объявлены как explicit) плохо взаимодействуют с перегрузкой и приводят к созданию невидимых временных объектов. Преобразования типов, определенные как функции-члены вида operator T (где T — тип), ничуть не лучше — они плохо взаимодействуют с неявными конструкторами и позволяют без ошибок скомпилировать разнообразные бессмысленные фрагменты кода (примеров чего несть числа — см. приведенные в конце рекомендации ссылки; мы приведем здесь только пару из них).
В С++ последовательность преобразований типов может включать не более одного пользовательского преобразования. Однако когда в эту последовательность добавляются встроенные преобразования, ситуация может оказаться предельно запутанной. Решение здесь простое и состоит в следующем.
• По умолчанию используйте explicit в конструкторах с одним аргументом (см. рекомендацию 54):
class Widget { // ...
explicit Widget(unsigned int widgetizationFactor);
explicit Widget(const char* name, const Widget* other = 0);
};
• Используйте для преобразований типов именованные функции, а не соответствующие операторы:
class String { // ...
const char* as_char_pointer() const; // в традициях c_str
};
См. также обсуждение копирующих конструкторов, объявленных как explicit, в рекомендации 54.
ПримерыПример 1. Перегрузка. Пусть у нас есть, например, Widget::Widget(unsigned int), который может быть вызван неявно, и функция Display, перегруженная для Widget и double. Рассмотрим следующий сюрприз при разрешении перегрузки:
void Display(double); // вывод double
void Display(const Widget&); // Вывод Widget
Display(5); // гм! Создание и вывод Widget
Пример 2. Работающие ошибки. Допустим, вы снабдили класс String оператором operator const char*:
class String {
// ...
public:
operator const char*(); // Грустное решение...
};
В результате этого становятся компилируемыми масса глупостей и опечаток. Пусть s1 и s2 — объекты типа String. Все приведенные ниже строки компилируются:
int x = s1 - s2; // Неопределенное поведение
const char* р = s1 - 5; // Неопределенное поведение
р = s1 + '0'; // делает не то, что вы ожидаете
if (s1 == "0") { ... } // делает не то, что вы ожидаете
Именно по этой причине в стандартном классе string отсутствует operator const char*.
ИсключенияПри нечастом и осторожном использовании неявные преобразования типов могут сделать код более коротким и интуитивно более понятным. Стандартный класс std::string определяет неявный конструктор, который получает один аргумент типа const char*. Такое решение отлично работает, поскольку проектировщики класса приняли определенные меры предосторожности.
• Не имеется автоматического преобразования std::string в const char*; такое преобразование типов выполняются при помощи двух именованных функций — c_str и data.
• Все операторы сравнений, определенные для std::string (например, ==, !=, <), перегружены для сравнения const char* и std::string в любом порядке (см. рекомендацию 29). Это позволяет избежать создания скрытых временных переменных.
Но и при этом возникают определенные неприятности, связанные с перегрузкой функций.
void Display(int);
void Display(std::string);
Display(NULL); // вызов Display(int)
Этот результат для некоторых может оказаться сюрпризом. (Кстати, если бы выполнялся вызов Display(std::string), код бы обладал неопределенным поведением, поскольку создание std::string из нулевого указателя некорректно, но конструктор этого класса не обязан проверять передаваемое ему значение на равенство нулю.)
Ссылки[Dewhurst03] §36-37 • [Lakos96] §9.3.1 • [Meyers96] §5 • [Murray93] §2.4 • [Sutter00] §6, §20, §39
41. Делайте данные-члены закрытыми (кроме случая агрегатов в стиле структур С)