KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Прочая околокомпьтерная литература » Коллектив Авторов - Цифровой журнал «Компьютерра» № 196

Коллектив Авторов - Цифровой журнал «Компьютерра» № 196

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Коллектив Авторов, "Цифровой журнал «Компьютерра» № 196" бесплатно, без регистрации.
Перейти на страницу:

У обоих способов есть недостатки. Свет фоновых звёзд пыль поглощает очень хорошо, поэтому по поглощению можно изучать её свойства только в довольно разреженных облаках; за плотными облаками звёзд практически не видно. Кроме того, определить количество вещества в облаке по поглощению можно не в любом месте облака, а только в тех направлениях, за которыми случилась фоновая звезда. Так что картина распределения пыли будет неполной.

Собственное излучение пыли из-за её низкой температуры приходится на субмиллиметровый и миллиметровый диапазоны. Его сложно наблюдать с поверхности Земли (мешает непрозрачность атмосферы), да и угловое разрешение (то есть чёткость картинки) на длинных волнах оставляет желать лучшего.

Тем не менее именно два этих способа доминируют в качестве индикаторов наличия и свойств межзвёздной пыли. И когда в 2005 году Джонатан Фостер и Алиса Гудмен строили карту распределения пыли в комплексе тёмных облаков в Персее, они ориентировались исключительно на поглощение. Наблюдения проводились на 3,5-метровом телескопе обсерватории Калар-Альто, не в видимом диапазоне, а слегка в стороне от него, уже в инфракрасной области, на длинах волн порядка одного–полутора микрон. В этом диапазоне пыль более прозрачна и потому позволяет различить фоновые звёзды за несколько более плотными частями облака.

В процессе наблюдений неожиданно выяснилось, что в этом диапазоне телескоп видит не только ослабленное пылью излучение фоновых звёзд. Слабым инфракрасным свечением охвачено всё облако целиком. Но излучать в этом диапазоне холодная газопылевая смесь не может (как не может сама светиться в видимом диапазоне ночная сторона Луны). Скажем, чтобы пылинка начала излучать в микронном диапазоне, её нужно нагреть до температуры выше тысячи градусов; не многие пылинки в состоянии вообще пережить такой нагрев, да и откуда ему в межзвёздном облаке взяться? Фостер и Гудмен пришли к выводу, что наблюдают рассеянное пылинками суммарное излучение звёзд Галактики. Это свечение они назвали термином «cloudshine» (по аналогии с пепельным светом — «Earthshine»).

В 2010 году Юрген Штайнакер и его коллеги продвинулись ещё дальше — дальше в инфракрасный диапазон. Они использовали для наблюдений космический телескоп «Спитцер» и обнаружили пепельный свет межзвёздной пыли уже на длинах волн до 4,5 микрон. Поскольку в этом диапазоне пыль ещё более прозрачна, рассеянное ею излучение несёт информацию из более сконденсированных частей межзвёздных облаков. Плотные газопылевые сгустки в этих облаках называются ядрами, и потому Штайнакер с коллегами предложили для звёздного инфракрасного света, отражённого пылью в ядрах, термин «coreshine».

Пепельный свет удобен в качестве инструмента для изучения межзвёздных облаков и ядер по нескольким причинам. Во-первых, он высвечивает структуру облака везде, а не только там, где есть фоновые звёзды. Во-вторых, он, в отличие от собственного излучения пыли, может наблюдаться с весьма приличным угловым разрешением и притом с поверхности Земли. В-третьих, интерпретация любых подобных наблюдений требует некоторых предположений о природе пылинок. Так вот, чтобы вытащить информацию из наблюдений рассеянного излучения, таких предположений требуется сделать меньше, чем при анализе наблюдений собственного излучения.

Впрочем, есть одно предположение о природе пылинок, без которого разобраться в рассеянном пепельном свете облаков невозможно. И именно оно привлекает к пепельному свету максимум интереса: это предположение о размере пылинки. Дело в том, что она наиболее эффективно поглощает и рассеивает излучение, длина волны которого не превосходит размера пылинки. Именно поэтому пыль становится прозрачнее в длинноволновом инфракрасном диапазоне. Способность пыли в ядрах межзвёздных облаков рассеивать излучение с длиной волны около 4–5 микрон означает, что и сами пылинки (по крайней мере самые крупные из них) имеют примерно такой размер. Но для пыли вне облаков уже давно установлено верхнее ограничение по размерам в десятые доли микрона, то есть на порядок меньше.

Таким образом, существование пепельного света облаков говорит о том, что пылинки в них раз в десять превосходят по размерам таковые в «обычной» (не облачной) межзвёздной среде. Иными словами, попав в облако, пылинки начинают расти. А рост пылинок — это первый шаг к образованию планет. Нет, никто, конечно, не предполагает, что в облаках могут сами по себе конденсироваться планеты: при невысокой облачной плотности этот процесс занял бы слишком много времени. Собственно говоря, даже с микронными пылинками возникают определённые проблемы: чтобы вырасти до таких размеров, пылинке требуется десяток миллионов лет, а межзвёздные облака (по современным оценкам) живут примерно половину этого срока. Поэтому обнаружение крупных пылинок привело к некоторому оживлению в стане сторонников медленной модели звездообразования, считающих, что

Так или иначе, крупные пылинки в облаках есть, а это означает, что рост пылинок в протопланетных дисках, заканчивающийся формированием планет, начинается не с нуля. Первые шаги в этом направлении пыль делает ещё в родительском облаке, когда ни звёзды, ни протопланетные диски вокруг них ещё не образовались. Или даже раньше?


К оглавлению

И ещё о цвете кожи: почему мы белые и почему мы загораем

Дмитрий Шабанов

Опубликовано 21 октября 2013

В прошлой колонке мы установили, почему кожа коренного населения Африки (континента, где возник наш вид), имеет более или менее чёрный цвет. Хотя потребности терморегуляции должны были способствовать осветлению кожи африканцев, действие этого фактора было преодолено ещё более мощным вектором отбора — необходимостью уменьшить вероятность возникновения опухолей.

Соматический мутагенез, который может стать причиной злокачественных опухолей, — не единственный неблагоприятный эффект УФ-лучей. Кроме прочего, ультрафиолет разрушает находящуюся в коже фолиевую кислоту — один из витаминов, важный регулятор нашей репродуктивной активности. Длительное пребывание на солнце снижает человеческую фертильность, но повышенное содержание в коже меланина уменьшает этот эффект. Кстати, недостаточность фолиевой кислоты — самый распространённый вид витаминной недостаточности.

И для защиты от опухолей, и для сохранения фолиевой кислоты людям выгодно иметь тёмную кожу, богатую меланином. Европейцы произошли от африканцев — значит, их кожа со временем светлела. Это свидетельствует о наличии какого-то ещё более мощного фактора, определяющего цвет кожи. Этот фактор связан с витамином D, чрезвычайно важным для регуляции обмена кальция и фосфора.

На самом деле регулятор кальциевого обмена образуется в почках. Для этого туда из печени поступает его предшественник, связанный с белком-переносчиком. То, что происходит в коже, — это еще более ранние стадии метаболизма витамина D.


Метаболизм витамина D в соответствии с классическим учебником А. Ленинджера (1985). Обмен кальция регулирует вещество, название которого выделено красным цветом. Справа показан путь получения искусственного провитамина.

Честно говоря, я не понимаю, почему регулятором содержания ионов кальция (чрезвычайно важного показателя) стало вещество, которое у всех организмов образуется в ходе фотохимической реакции, то есть относительно «ненадёжным» путём. Почему не реализовался какой-то более простой путь? Но, так или иначе, такой способ регуляции кальциевого баланса намного старше и нашего вида, и нашего рода, и даже нашего класса.

Когда наши темнокожие предки начали заселять умеренные широты Евразии, они стали получать меньше ультрафиолета и недобирать витамина D. Ничем хорошим такая нехватка не заканчивается. У взрослых она ведёт к остеомаляции (размягчению костей), у детей — к рахиту.

Вам кажется, что рак кожи страшнее рахита? Не торопитесь с выводами. Рак поражает людей в различном возрасте, но чаще всего — зрелых (накопление соматических мутаций, приводящее к злокачественному росту, может быть довольно длительным процессом). Многие из людей, умирающих от рака, успевают оставить потомство и передать свои гены детям. Рахитом в неподходящих условиях заболевают практически все дети. Из вялых рахитичных детей развиваются вялые взрослые с деформированным скелетом и целым букетом сопутствующих аномалий. Женщины, перенёсшие в детстве эту болезнь в серьёзной форме, при отсутствии адекватной медицинской помощи с большой вероятностью умрут во время первых родов (сейчас им и их детям сохраняют жизнь с помощью кесарева сечения). Видимо, охотники, получавшие с печенью добытых животных значительное количество витамина D, были более устойчивы к рахиту, чем земледельцы, но отбор на устойчивость к рахиту должен был идти и среди них.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*