KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Прочая околокомпьтерная литература » Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции

Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Турчин Фёдорович, "Феномен науки. Кибернетический подход к эволюции" бесплатно, без регистрации.
Перейти на страницу:

Почему же квантовая механика потребовала осознания «языковости» теорий?

Согласно первоначальной атомистической концепции атомы представлялись просто очень маленькими частицами вещества, маленькими тельцами, имеющими, в частности, определенную форму и цвет, от которых зависят физические свойства и цвет больших скоплений атомов. Атомная физика начала XX в. перенесла понятие атома («неделимый») на элементарные частицы — электроны и протоны (к которым вскоре добавился нейтрон), а слово «атом» стало обозначать конструкцию, состоящую из атомного ядра (оно, по первоначальной гипотезе, являлось скоплением протонов и электронов), вокруг которого вращаются электроны, как планеты вокруг Солнца. Такое представление о строении вещества считалось гипотетическим, но чрезвычайно правдоподобным. Сама гипотетичность понималась в том смысле, о котором мы говорили выше: планетарная модель атома должна быть либо истинной, либо ложной. Если она истинна (а в этом почти не было сомнений), то электроны — это «на самом деле» маленькие частички вещества, которые описывают определенные траектории вокруг ядра. Правда, по сравнению с атомами древних элементарные частицы уже стали утрачивать некоторые, казалось бы, совершенно необходимые для частиц вещества свойства. Стало ясно, что понятие цвета совершенно неприменимо к электронам и протонам; не то, чтобы мы не знали, какого они цвета, а просто вопрос этот не имеет смысла, ибо цвет есть результат взаимодействия со светом по крайней мере атома в целом, а точнее — скопления многих атомов. Возникали также сомнения относительно понятий о форме и размерах электронов. Но святая святых представления о материальной частице — наличие у частицы в каждый момент времени определенного положения в пространстве — оставалось несомненным и само собой разумеющимся.

13.6. Соотношение неопределенностей

Квантовая механика разрушила это представление. Она была вынуждена это сделать под напором новых экспериментальных данных. Оказалось, что элементарные частицы ведут себя при определенных условиях не как частицы, а как волны, но при этом они не «размазываются» по большой области пространства, а сохраняют свои малые размеры и свою дискретность, размазывается же лишь вероятность их обнаружения в той или иной точке пространства.



Рис. 13.1. Дифракция электронов

Рассмотрим в качестве иллюстрации рис. 13.1. На нем изображена электронная пушка, посылающая электроны определенного импульса на диафрагму, за которой расположен экран. Диафрагма сделана из непрозрачного для электронов материала, но имеет два отверстия, через которые электроны и попадают на экран. Экран покрыт веществом, которое светится под действием электронов, так что в том месте, куда попал электрон, происходит вспышка. Поток электронов из пушки достаточно редкий, так что каждый электрон проходит через диафрагму и фиксируется на экране независимо от других. Расстояние между отверстиями в диафрагме во много раз больше размеров электронов, полученных любыми оценками, но сравнимо по порядку с величиной h/p, где h — константа Планка, а p — импульс электрона, т. е. произведение его скорости на массу.

Таковы условия эксперимента. Результатом его является распределение вспышек на экране. Первый вывод из анализа результатов эксперимента таков: электроны попадают в различные точки экрана, и предсказать, в какую точку попадет каждый электрон, невозможно, можно только предсказать вероятность попадания в ту или иную точку, т. е. среднюю плотность вспышек после попадания в экран очень большого числа электронов.

Но это еще полбеды. Можно представить себе, что различные электроны пролетают в разных местах отверстий в диафрагме, испытывают различной силы влияния со стороны краев отверстий и поэтому отклоняются по-разному. Настоящие неприятности возникают тогда, когда мы начинаем исследовать среднюю плотность вспышек на экране и сравнивать ее с теми результатами, которые получаются, когда мы закрываем одно из отверстий в диафрагме. Если электрон — это маленькая частица материи, то, попадая в район диафрагмы, он либо поглощается, либо проходит через одно из двух отверстий. Так как отверстия диафрагмы расположены симметрично относительно электронной пушки, в среднем половина электронов проходит через каждое отверстие. Значит, если мы закроем одно из отверстий и пропустим через диафрагму миллион электронов, а затем закроем второе отверстие, но откроем первое и пропустим еще миллион электронов, то мы должны получить такую же среднюю плотность вспышек, как если бы мы пропустили через диафрагму с двумя отверстиями два миллиона электронов. Но оказывается, что это не так! При двух отверстиях распределение получается иным, оно содержит максимумы и минимумы, как при дифракции волн.

Рассчитать среднюю плотность вспышек можно с помощью квантовой механики, связав с электронами так называемую волновую функцию, представляющую собой некое воображаемое поле, интенсивность которого пропорциональна вероятности наблюдаемых событий.

У нас отняло бы слишком много места описание всех попыток согласовать представление об электроне как об «обычной» частице (такие частицы стали называть классическими в отличие от квантовых) с экспериментальными данными об их поведении. Этому вопросу посвящена обширная литература, как специальная, так и популярная. Все такие попытки оказались безуспешными. Выяснились следующие две вещи.

Во-первых, если одновременно измеряется координата квантовой частицы (любой, не обязательно электронов) по некоторой оси х и импульс в этом направлении р, то ошибки измерения, которые мы обозначим через x; и p соответственно, подчиняются соотношению неопределенностей Гейзенберга:

x × ∆ph.

Никакими ухищрениями обойти это соотношение нельзя. Чем точнее мы пытаемся измерить координаты, тем больше оказывается разброс по величине импульса р, и наоборот. Соотношение неопределенностей есть универсальный закон природы, но, так как постоянная Планка h весьма мала, при измерениях с телами макроскопического размера оно роли не играет.

Во-вторых, представление о том, что на самом деле квантовые частицы движутся по каким-то вполне определенным траекториям, т. е. в каждый момент времени на самом деле имеют вполне определенные координату и скорость (а значит, и импульс), которые мы просто не можем точно измерить, наталкивается на непреодолимые логические трудности. Напротив, принципиальный отказ от приписывания квантовой частице реальной траектории и принятие положения, что самое полное описание состояния частиц — это задание ее волновой функции, приводят к логически безупречной, а математически простой и изящной теории, которая блестяще согласуется с экспериментальными фактами; в частности, из нее немедленно вытекает соотношение неопределенностей. Эта теория — квантовая механика. В уяснении физических и логических основ квантовой механики и в ее философском осмыслении главную роль сыграла деятельность крупнейшего ученого-философа нашего времени Нильса Бора (1885–1962).

13.7. Наглядные и знаковые модели

Итак, у электрона не существует траектории. Самое большое, что можно сказать об электроне, — это указать его волновую функцию, квадрат которой даст нам вероятность обнаружения электрона вблизи той или иной точки пространства. В то же время мы говорим, что электрон — материальная частица определенных (и очень маленьких) размеров. Смешение этих двух представлений, которого потребовали опытные факты, оказалось делом очень нелегким, и до сих пор все еще находятся люди, которые отвергают обычную интерпретацию квантовой механики (принятую вслед за школой Бора подавляющим большинством физиков) и желают во что бы то ни стало вернуть квантовым частицам их траекторию. Откуда же такая настойчивость? Ведь экспроприация у электронов цвета прошла совершенно безболезненно, а с логической точки зрения признание неприменимости к электрону понятия траектории принципиально ничем не отличается от признания неприменимости понятия цвета. Различие здесь в том, что при отказе от понятия цвета мы проявляем известную долю лицемерия. Мы говорим, что у электрона нет цвета, а сами представляем его в виде этакого серенького (или блестящего — это дело вкуса) шарика. Отсутствие цвета мы заменяем на произвольный цвет, и это нисколько не мешает использованию нашей модели. По отношению к положению в пространстве этот фокус не проходит. Представление об электроне, который в каждый момент где-то находится, мешает пониманию квантовой механики и приходит в противоречие с опытными данными. Здесь мы вынуждены полностью отказаться от наглядно-геометрического представления о движении частицы. Это и вызывает болезненную реакцию. Мы настолько привыкли соединять пространственно-временную картину с истинной реальностью, с тем, что существует объективно и независимо от нас, что нам очень трудно поверить в объективную реальность, которая не укладывается в эти рамки. И мы снова и снова спрашиваем себя: но ведь если электрон не «размазан» в пространстве, то на самом деле он где-то должен находиться?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*