KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Прочая околокомпьтерная литература » Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

Виктор Майер-Шенбергер - Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Виктор Майер-Шенбергер, "Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим" бесплатно, без регистрации.
Перейти на страницу:

Например, если электронные медицинские записи показывают, что в определенном сочетании апельсиновый сок и аспирин способны излечить от рака, то точная причина менее важна, чем сам факт: лечение эффективно. Если мы можем сэкономить деньги, зная, когда лучше купить авиабилет, но при этом не имеем представления о том, что стоит за их ценообразованием, этого вполне достаточно. Вопрос не в том почему, а в том что. В мире больших данных нам не всегда нужно знать причины, которые стоят за теми или иными явлениями. Лучше позволить данным говорить самим за себя.

Нам больше не нужно ограничиваться проверкой небольшого количества гипотез, тщательно сформулированных задолго до сбора данных. Позволив данным «говорить», мы можем уловить корреляции, о существовании которых даже не подозревали. В связи с этим хедж-фонды анализируют записи в Twitter, чтобы прогнозировать работу фондового рынка. Amazon и Netflix рекомендуют продукты исходя из множества взаимодействий пользователей со своими сайтами. А Twitter, LinkedIn и Facebook выстраивают «социальные графы» отношений пользователей для изучения их предпочтений.

Разумеется, люди анализировали данные в течение тысячелетий. И письменность в древней Месопотамии появилась благодаря тому, что счетоводам нужен был эффективный инструмент для записи и отслеживания информации. С библейских времен правительства проводили переписи для сбора огромных наборов данных о своем населении, и в течение двухсот лет актуарии собирали ценнейшие данные о рисках, которые они надеялись понять или хотя бы избежать.

В «аналоговую эпоху» сбор и анализ таких данных был чрезвычайно дорогостоящим и трудоемким. Появление новых вопросов, как правило, означало необходимость в повторном сборе и анализе данных.

Большим шагом на пути к более эффективному управлению данными стало появление оцифровки — перевода аналоговой информации в доступную для чтения на компьютерах, что упрощало и удешевляло ее хранение и обработку. Это значительно повысило эффективность. То, на что раньше уходили годы сбора и вычисления, теперь выполнялось за несколько дней, а то и быстрее. Но, кроме этого, мало что изменилось. Люди, занимающиеся анализом данных, были слишком погружены в аналоговую парадигму, предполагая, что наборы данных имели единственное предназначение, в котором и заключалась их ценность. Сама технология закрепила этот предрассудок. И хотя оцифровка важнейшим образом способствовала переходу на большие данные, сам факт существования компьютеров не обеспечил этот переход.

Трудно описать нынешнюю ситуацию существующими понятиями. Для того чтобы в целом очертить изменения, воспользуемся датификацией (data-ization) — концепцией, с которой познакомим вас в пятой главе. Речь идет о преобразовании в формат данных всего, что есть на планете, включая то, что мы никогда не рассматривали как информацию (например, местоположение человека, вибрации двигателя или нагрузку на мост), путем количественного анализа. Это открывает перед нами новые возможности, такие как прогнозный анализ. Он позволяет обнаружить, например, что двигатель вот-вот придет в неисправность, исходя из его перегрева или производимых им вибраций. В результате мы можем открыть неявное, скрытое значение информации.

Полным ходом ведется «поиск сокровищ» — извлечение ценных идей из данных и раскрытие их потенциала путем перехода от причинности к корреляции. Это стало возможным благодаря новым техническим средствам. Но сокровища заключаются не только в этом. Вполне вероятно, что каждый набор данных имеет внутреннюю, пока еще не раскрытую ценность, и весь мир стремится обнаружить и заполучить ее.

Большие данные вносят коррективы в характер бизнеса, рынков и общества, о которых подробнее мы поговорим в шестой и седьмой главах. В ХХ веке особое значение придавалось не физической инфраструктуре, а нематериальным активам, не земле и заводам, а интеллектуальной собственности. Сейчас общество идет к тому, что новым источником ценности станет не мощность компьютерного оборудования, а получаемые им данные и способ их анализа. Данные становятся важным корпоративным активом, жизненно важным экономическим вкладом и основой новых бизнес-моделей. И хотя данные еще не вносятся в корпоративные балансовые отчеты, вероятно, это вопрос времени.

Несмотря на то что технологии обработки данных появились некоторое время назад, они были доступны только агентствам по шпионажу, исследовательским лабораториям и крупнейшим мировым компаниям. Walmart[18] и CapitalOne[19] первыми использовали большие данные в розничной торговле и банковском деле, тем самым изменив их. Теперь многие из этих инструментов стали широкодоступными.

Эти изменения в большей мере коснутся отдельных лиц, ведь в мире, где вероятность и корреляции имеют первостепенное значение, специальные знания менее важны. Узкие специалисты останутся востребованными, но им придется считаться с большими данными. Помните, как в фильме «Человек, который изменил всё»:[20] на смену бейсбольным скаутам пришли специалисты по статистике, а интуиция уступила место сложной аналитике. Нам придется пересмотреть традиционные представления об управлении, принятии решений, человеческих ресурсах и образовании.

Большинство наших учреждений создавались исходя из предположения, что информация, используемая при принятии решений, характеризуется небольшим объемом, точностью и причинностью. Но все меняется: если данных чрезвычайно много, они быстро обрабатываются и не допускают неточности. Более того, из-за огромного объема информации решения принимают не люди, а машины. Темную сторону больших данных мы рассмотрим в восьмой главе.

Общество накопило тысячелетний опыт понимания и регулирования поведения человека. Но что делать с алгоритмом? Еще на ранних этапах обработки данных влиятельные лица увидели угрозу конфиденциальности. С тех пор общество создало массивный свод правил для защиты конфиденциальной информации. Однако в эпоху больших данных это практически бесполезная «линия Мажино».[21] Люди охотно делятся информацией в интернете, и эта возможность — одна из главных функций веб-служб, а не слабое место, которое нужно устранить.

Опасность для отдельных лиц теперь представляет не угроза конфиденциальности, а вероятность: алгоритмы будут прогнозировать вероятность того, что человек получит сердечный приступ (и ему придется больше платить за медицинское страхование), не выполнит долговые обязательства по ипотечному кредиту (и ему будет отказано в займе) или совершит преступление (и, возможно, будет арестован заранее). Это заставляет взглянуть на неприкосновенность волеизъявления и диктатуру данных с этической точки зрения. Должна ли воля человека превалировать над большими данными, даже если статистика утверждает иное? Подобно тому как печатный станок дал толчок для принятия законов, гарантирующих свободу слова (раньше они не существовали, так как практически нечего было защищать), в эпоху больших данных потребуются новые правила для защиты неприкосновенности личности.

Обществу и организациям во многом придется изменить способы обработки данных и управления ими. Мы вступаем в мир постоянного прогнозирования на основе данных, в котором, возможно, не всегда сможем объяснить причины своих решений. Что значит, если врач не может обосновать необходимость медицинского вмешательства, при этом не требуя согласия пациента полагаться на «черный ящик» (а именно так и должен поступать врач, опирающийся на диагноз, который получен на основе больших данных)? Придется ли в судебной системе менять стандартное понятие «вероятная причина» на «вероятностная причина» — и если да, то каковы будут последствия для свободы человека и его чувства собственного достоинства?

В девятой главе мы предлагаем ряд принципов эпохи больших данных, которые основаны на ценностях, возникших и закрепившихся в более знакомом нам мире «малых данных». Старые правила необходимо обновить в соответствии с новыми обстоятельствами.

Польза для общества будет огромной, поскольку большие данные помогут решению насущных глобальных проблем, таких как борьба с изменением климата, искоренение болезней, а также содействие эффективному управлению и экономическому развитию. При этом эпоха больших данных заставляет нас лучше подготовиться к изменениям организаций и нас самих, которые произойдут в результате освоения технологий.

Большие данные — важный шаг человечества в постоянном стремлении количественно измерить и постичь окружающий мир. То, что прежде невозможно было измерять, хранить, анализировать и распространять, находит свое выражение в виде данных. Использование огромных массивов данных вместо их малой доли и выбор количества в ущерб точности открывают путь к новым способам понимания мира. Это подталкивает общество отказаться от освященного веками поиска причинности и в большинстве случаев пользоваться преимуществами корреляций.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*