KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Прочая околокомпьтерная литература » Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции

Турчин Фёдорович - Феномен науки. Кибернетический подход к эволюции

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Турчин Фёдорович, "Феномен науки. Кибернетический подход к эволюции" бесплатно, без регистрации.
Перейти на страницу:

Поставим вопрос: является ли число 1000 большим или маленьким? Оно большое, так как оно больше единицы. Оно маленькое, так как оно много меньше миллиона. Значит, оно и большое и небольшое одновременно. Диалектическое противоречие. Большое есть и в то же время небольшое, A есть не A.

Понятия «большое» и «маленькое» рассматривались здесь как свойства объектов (чисел). На самом же деле это не свойства, а замаскированные (с помощью грамматической категории прилагательного) отношения. Точный смысл можно вложить только в понятия «больше» и «меньше». Если с этой точки зрения разобрать приведенное выше рассуждение, то оно окажется просто бессмысленным. Эта карикатура направлена не против Гегеля — его заслуги в создании новой логики неоспоримы, а против тех, кто некритически относится к диалектическому методу Гегеля и во второй половине XX в. пропагандирует образ мышления первой половины XIX в., игнорируя огромный прогресс, достигнутый логикой за полтора столетия.

6.5. Математическая логика

Решающим фактором в прогрессе логики была ее математизация (конец XIX – начало XX вв.). Математизация логики была порождена потребностями математики и осуществлена математиками. Разрыв между математикой и логикой был, наконец, преодолен. Расширив свой язык и математизировав его, логика стала пригодной для описания и исследования математического доказательства. С другой стороны, для решения логических проблем стали применяться математические методы.

Завоевав плацдарм в области математики, новая логика стала проникать в естественные науки и философию. При этом роль собственно математического элемента (использование математических моделей) упала. Тем не менее всю современную логику часто называют «математической» по причине ее языка и происхождения.

6.6. Объекты и высказывания

Прежде чем продвигаться дальше в анализе языка и мышления, нам надо дать краткий набросок современной логики. Для наших целей достаточно рассмотреть только язык современной логики и те понятия, которые связаны с языком. Понятия, связанные с логическим выводом (доказательством), мы пока оставим в стороне.

Современная логика делит все сущее на объекты (или предметы) и высказывания (или утверждения). В естественном языке высказывания изображаются предложениями или наборами предложений, а объекты — словами и словосочетаниями, входящими в состав предложения. Примеры объектов: «цапля», «дядя Коля», «председатель колхоза». Примеры высказываний: «цапля сдохла», «дядю Колю выбрали председателем колхоза». Чаще всего объекты выражаются существительными, но это не обязательно. Например, «курить» — объект в высказывании «курить вредно». В приложении к математике объекты обычно называются термами, а высказывания соотношениями.

Примеры термов:

3.14.ax2 + bx + c.abf(z)dz.

Примеры соотношений:

2 + bx + c = 0.0 < z < 1.Каково бы ни было натуральное число n > 1, найдется простое число р, которое является делителем числа n.Сумма квадратов катетов равна квадрату гипотенузы.

Понятия «объект» и «высказывание» считаются в логике первичными, интуитивно ясными и неопределяемыми. Формальное различие между ними состоит в том, что о высказывании имеет смысл говорить, что оно является истинным или ложным. Так, третий и четвертый примеры математических соотношений представляют собой истинные высказывания, а первое и второе соотношения могут быть истинными или ложными в зависимости от значения переменных х и z. К объектам понятия истинности и ложности неприменимы.

Объекты и высказывания, которые считаются элементарными, т. е. не расчлененными на отдельные составные части, обозначаются в логике буквами. Объекты обычно обозначаются малыми латинскими буквами, а высказывания — большими. Мы будем придерживаться этой символики, но дополнительно введем еще одно соглашение. Для ясности записи и уменьшения словесных пояснений будем иногда обозначать элементарные объекты и высказывания словами и словосочетаниями, взятыми в кавычки. Следовательно, словосочетания в кавычках будут рассматриваться на равных правах с буквами.

Объекты и высказывания, которые не являются элементарными, конструируются, очевидно, из других объектов и высказываний. Мы должны указать теперь способ конструирования.

При наличии двух типов элементов (объекты и высказывания) и предполагая, что элементы, служащие строительным материалом, принадлежат все к одному типу, мы получаем четыре возможных типа конструкций, которые мы сведем в следующую таблицу.

Что конструируется Из чего конструируется Название конструкции Высказывание Высказывания Логическая связка Высказывание Объекты Предикат Объект Высказывания — Объект Объекты Функция

6.7. Логические связки

Широко употребительных логических связок пять. Это отрицание (изображается знаком ¬), конъюнкция (знак ∧), дизъюнкция (знак ∨), импликация (знак ⊃) и эквивалентность (знак ≡).

Высказывание ¬A (читается «не A») означает, что высказывание A ложно. Иначе говоря, ¬A истинно тогда, когда A ложно, и ложно тогда, когда A истинно.

Высказывание AB (читается «A и B») означает утверждение, что верно и A, и B. Оно верно только в том случае, если верны оба высказывания A и B.

Высказывание ABA или B») верно, если верно хотя бы одно из высказываний A и B.

Высказывание AB читается «A влечет B» или «если A, то B». Оно неверно, если A истинно, B ложно, и верно во всех остальных случаях.

Наконец, высказывание AB верно в том случае, если высказывания A и B либо оба истинны, либо оба ложны.

Для обозначения структуры связей пользуются скобками подобно тому, как это делается в алгебре для обозначения порядка выполнения арифметических действий. Так, например, высказывание ¬AB означает «A неверно, а B верно», а высказывание ¬(AB) — «неверно, что A и B оба верны». И так же, как в алгебре, для уменьшения числа скобок устанавливается порядок старшинства связок по силе связи. Выше мы перечислили связки в порядке ослабления связи. Например, конъюнкция связывает сильнее, чем импликация, поэтому высказывание ABC понимается как A ⊃ (BC), но не как (AB) ∧ C. Это соответствует тому, что в алгебре a + b × c означает a + (b × c), но не (a + b) × c.

Приведем несколько примеров составных высказываний.

Известная скороговорка утверждает: «цапля чахла, цапля сохла, цапля сдохла». Это высказывание можно записать в виде: «цапля чахла» ∧ «цапля сохла» ∧ «цапля сдохла».

Соотношение 0 < Z < 1 есть конъюнкция «Z > 0» ∧ «Z < 1», a соотношение |Z| > 1 — дизъюнкция «Z > 1» ∨ «Z < -1». Определение логической связки ≡ данное выше, можно записать так:

[(AB) ⊃ (AB) ∨ (¬A ∧ ¬B)] ∧ [(AB) ∨ (¬A ∧ ¬B) ⊃ (AB)]

Предоставляем читателю перевести на обычный язык следующее высказывание:

«Свет включен» ∧ «Лампочка не горит» ⊃ «Нет электричества» ∨ «Перегорели пробки» ∨ «Перегорела лампочка».

Если считать, что высказывания могут быть только истинными или ложными и, сверх этого, о высказывании ничего сказать нельзя, то перечисленных связок достаточно, чтобы выразить все мыслимые конструкции из высказываний. Достаточно даже двух связок, например отрицания и конъюнкции или отрицания и дизъюнкции. Такая ситуация имеет место, в частности, в отношении утверждений математики. Поэтому в математической логике других связок не используется.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*