Компьютерра - Журнал «Компьютерра» № 17 от 8 мая 2007 года
К чему я все это вспоминаю?
Вероятно, со дня знаменитого доклада А. С. Попова 7 мая 1895 года на заседании Русского физико-химического общества, а может быть, и раньше – со времен Максвелла и Герца, конструирование радиотехнических устройств и их инженерный расчет являлись пусть и взаимосвязанными, но независимыми этапами работы любого радиоинженера. Лампы, транзисторы и даже отдельные блоки устройств – они работают. А логарифмическая линейка, калькулятор, ЭВМ – считают.
Тем удивительнее наблюдать, как с ростом быстродействия вычислителей – всего лишь быстродействия! – происходит нечто поразительное: мы все больше и больше приближаемся к тому, что процесс вычисления результата работы радиоэлектронного устройства сможем практически использовать вместо самого этого устройства, собранного из множества сложных и трудоемких в изготовлении компонентов. Во многих случаях мы уже сегодня так поступаем.
В мире радио много чего появилось и случилось за эти 112 лет… Но кажется, что столь концептуальных процессов, как эти, в его истории еще не бывало. Исключая, быть может, сам факт открытия радиоволн.
Желая от всего сердца поздравить наших читателей с Днем радио, мы с удовольствием направляем поздравления также математикам (математический аппарат дискретной фильтрации, быстрое преобразование Фурье и другие инструменты современного радиоинженера), разработчикам сигнальных процессоров, микросхем радиочастотных синтезаторов, коммутаторов и другого компьютерного… прошу прощения, уже радиотехнического железа, а также радиоконструкторам… или, может быть, уже радиопрограммистам?..
Софт прямого эфира
Автор: Кононов, Владимир
Со времен Попова, Маркони, Герца прошло всего лишь чуть больше века, но каков прогресс в области связи! Современное высококачественное радиоприемное устройство – это довольно сложный и объемный аппарат, состоящий из сотен и тысяч компонентов, как правило, содержащий свой собственный вычислитель на одном, а иногда и нескольких процессорах для реализации многочисленных рабочих и сервисных функций. Посмотрим на один из вариантов упрощенной блок-схемы современного приемника (рис. 1), и станет ясно, какую прорву задач приходится решать для получения изделия высокого класса. Попробуем разобраться, что от чего зависит в приемном устройстве и какие качественные показатели являются самыми важными.
ИСТОРИЯ
Значение радио в войне было настолько велико, что в преддверии великой победы над фашистской Германией в 1945 г. и в связи с 50-летием изобретения радио день 7 мая был объявлен всесоюзным праздником – Днем Радио.
Еще не так давно – когда станций в эфире было не слишком много – на первом месте находилась чувствительность приемника, то есть его способность принимать слабые сигналы. Чувствительность приемника напрямую зависит от его полосы пропускания. В свою очередь, полоса пропускания определяется тем видом модуляции, для которой предназначен приемник (обычно приемники проектируются с возможностью приема сигналов нескольких видов модуляции). А если добавить селективность (возможность отстроиться от соседней мешающей станции), то задача еще более усложнится…
В настоящее время приоритетным параметром в приемнике становится динамический диапазон, характеризующий реакцию на сигналы мощных станций, работающих «рядом» с частотой настройки приемника. Действительно, что толку от высокой чувствительности, если соседняя мощная станция способна полностью заблокировать принимаемый сигнал? Современными средствами получить высокую чувствительность не проблема, вернее сказать, не такая уж сложная проблема. А вот получить большой динамический диапазон – не так просто. Почему? Да потому, что все каскады приемника (особенно на входе) работают в линейном режиме, для передачи сигнала от антенны на выход без искажений…
Теперь несколько слов о других блоках, из которых состоит современный приемник. В них тоже не все так просто. Чем обеспечить селективность при разных видах модуляции? Ответ один – фильтрами. Нам необходимо отфильтровать полезный сигнал и не пропустить побочный, вредный. Хорошие фильтры сложны и дороги. Современный кварцевый фильтр среднего класса стоит около 5 тысяч рублей, а в конструкции хорошего приемника этих фильтров много – но ничего не поделаешь, приходится идти на это. А ведь необходимо еще реализовать функции АРУ (автоматическая регулировка усиления), дистанционного управления, постараться соблюсти все требования эргономики – сложность задач, которые стоят перед разработчиками хорошего радиоприемного устройства, очевидна.
Обратим внимание еще на один важный момент: когда приемник собран "в железе", в нем уже трудно что-нибудь изменить, модернизировать. Ежегодно разрабатываются (и изготавливаются) тысячи приемников для различных применений, среди которых радиосвязь на земле, в воздухе и на море, создаются радиовещательные приемники, приемники сотовых телефонов, наконец радиоприемные устройства для космических объектов (а в космос потом не прыгнешь и не заменишь нужный блок на совершенно новый). Миллионы микросхем, транзисторов, резисторов, конденсаторов, фильтров и т. д. устанавливаются в приемники, которые через какое-то время устареют и станут ненужными. Конечно, скажут мне, это понятно, но что поделать, такова жизнь. И вот тут мы подошли к самому главному, к "изюминке".
Всем известно, что компьютерная техника сейчас достигла таких высот, которые нам и не снились пару десятков лет назад. Машины нынче быстрые, высокопроизводительные. Программные алгоритмы позволили моделировать на компьютерах большинство физических устройств, включая и те, которые в железе непросто было реализовать.
История первая: Фарадей и МаксвеллМайкл Фарадей родился 22 сентября 1791 года в пригороде Лондона Ньюингтоне в семье кузнеца. Бедность родителей не позволила ему закончить начальное образование, и в возрасте тринадцати лет его послали для обучения к переплетчику. Работая с книгами, Майкл много читал, особенно интересуясь химией и физикой и стараясь опытами проверить прочитанное. Так формировался искусный экспериментатор, который до конца жизни не знал ни алгебры, ни геометрии.
В 1821 году Фарадей узнает об опытах Эрстеда и Ампера по отклонению магнитной стрелки вблизи провода с током. Уже через несколько месяцев он доказывает существование вокруг проводника кольцевых магнитных силовых линий, то есть фактически формулирует правило буравчика. В его рабочем дневнике появляется запись новой задачи: "Превратить магнетизм в электричество".
Для решения сложнейшей по тем временам задачи потребовалось десять лет беспрерывных экспериментов. Фарадей поставил огромное количество опытов, но постоянно терпел неудачу. Первый успех пришел лишь в 1831 году. В одном из опытов использовался кольцевой сердечник из магнитомягкого железа с двумя изолированными обмотками. Выводы одной из них замыкались проводником, возле которого располагалась магнитная стрелка. В момент подключения к другой обмотке гальванической батареи стрелка отклонялась. В других опытах магнитная стрелка отсутствовала, а концы вторичной обмотки не замыкались, а лишь очень близко располагались, образуя разрыв в доли миллиметра. При замыкании и размыкании ключа, управляющего током в первичной обмотке, в этом малом промежутке проскакивала электрическая искра. Так была открыта электромагнитная индукция.
Однажды после лекции Фарадея в Королевском обществе, где он демонстрировал свои опыты, к нему подошел богатый коммерсант, оказывавший обществу материальную поддержку, и надменно спросил:
– Все, что вы нам здесь показывали, господин Фарадей, действительно красиво. Но теперь скажите мне, для чего годится эта магнитная индукция?!
– А для чего годится только что родившийся ребенок? – ответил рассердившийся Фарадей.
С ноября 1831 года Фарадей начал систематически печатать свои "Экспериментальные исследования по электричеству", составившие тридцать серий (более трех тысяч параграфов). Это великолепный памятник его научному творчеству.
Результаты опытов свидетельствовали о существовании нового вида материи – электромагнитных волн. 12 декабря 1832 года Фарадей сдал на хранение в архив Королевского общества запечатанное письмо, в котором сообщалось, что оно написано с целью закрепления даты открытия в случае его экспериментального подтверждения. Конверт был вскрыт лишь в 1938 году, 106 лет спустя.
Поразительны своей проницательностью основные мысли письма: электрическая индукция распространяется подобно волнам с конечной скоростью, световые явления не отличаются от электрической индукции, для анализа указанных явлений следует использовать теорию колебаний. Эти интуитивные догадки полностью перекликаются с идеями электромагнитной теории, разработанной много позднее Максвеллом и подтвержденной опытами Герца.