Компьютерра - Журнал «Компьютерра» № 24 от 26 июня 2007 года
Наверняка многие читатели скажут, что существует множество замечательных пакетов и продуктов, которые позволяют решать указанные задачи. Это действительно так. К сожалению, если начинать описывать все возможные комбинации продуктов с уче– том версий и особенностями интеграции, то получится многотомный труд с малоупотребимыми результата– ми, вследствие их быстрого устаревания. Поэтому в статье предложен только подход к решению задач и указаны пакеты и продукты, которые были выбраны на основе личного опыта и прошли экспериментальную апробацию в различных областях деятельности, а не только в научной.
1. Почему начато с LaTeX?
Потому, что текстовый редактор – самый частый инструмент в обиходе научного работника. Это раньше можно было получать зар– плату и заниматься измерениями. А теперь – непрерывные заявки на гранты/отчеты/статьи/презентации и прочие оргвещи, позволяющие другим членам группы проводить научные изыскания. LaTeX выбран как единое средство для написания статей, подготовки презентаций. Более того, поскольку входные файлы имеют понятный ASCII-формат, автоматизированные системы наполнения документов пишутся очень легко. И делается это при помощи скриптовых языков.
2. Почему речь идет о Python, а не о С++. Все просто. Имея опыт промышленной разработки C++, я хорошо представляю, каковы накладные расходы, связанные с его использованием.
Какие же требования следует предъявить к языку программирования для научных работников?
Опыт показывает, что следующий список близок к оптимальному:
• однозначность конструкций языка, прозрачный синтаксис;
• легкость понимания, приемлемая кривая обучения;
• кроссплатформность;
• гибкость;
• компактность программ;
• поддержка в научном
• сообществе;
• широкий набор библиотек;
• сокрытие технологических сложностей (COM, работа с XML, списки, хеши, таблицы, работа со строками, итераторы);
• возможность с равной легкостью разрабатывать как CLI-склейки, так и GUI;
• удобство отладки;
• поддержка ООП-концепций;
• быстрота выдачи готового кода (желательно с автотестами);
• возможность интроспекции.
• Имея опыт работы с C++, Java, Perl, Python, я остановился на последнем. И на нем много чего было сделано. Изумительно просто можно организовать генерацию Excel-отчетов (с раскраской и форматированием), не зная глубинно о OM. С XML очень удобно работать… и масса дру-гих вещей.
3. На Matplotlib свет клином не сошелся. Пакетов много, но я говорю о конкретном решении, которое я собрал (оценивая по многим параметрам). Перечислять все пакеты в популярной статье, наверное, ни к чему. Я хотел рассказать об общем подходе в создании АРМ научного работника.
Смысл не в том, чтобы метаться от пакета к пакету, а в том, что можно собрать под себя инструмент и далее оттачивать свое мастерство в решении конкретных задач. Я вовсе не настаиваю на конкретном пакете, я говорю о концепции. Люди, которые решат использовать open source, так или иначе должны будут включиться в community и оглядеться вокруг повнимательнее.
АНАЛИЗЫ: Homo modificans. Часть вторая: Серпом по крыльям
Автор: Александр Чубенко
Предложение разобрать по косточкам мечты о летающих, дышащих жабрами или фотосинтезирующих людях, которым заканчивалась статья "Клыки и когти из стволовых клеток", некоторые читатели явно поняли буквально. И прислали абсолютно фантастические предложения, не дав себе труда подумать, зачем это вообще надо, каких усилий потребует от будущих генных инженеров и главное – что получится, если их идеи, несмотря на невообразимые трудности, все же удастся реализовать.
Лопух, парящий на крыльях ночиПервый приз за необузданно необдуманную задумку я бы отдал читателю, предложившему"…возможность обретения человеком способности к эхолокации, подобно летучим мышам… Понятно, что на этом пути много проблем – надо изменить строение голосовых связок, чтобы научиться издавать высокочастотные звуки, а также усовершенствовать слуховой аппарат". Пищать и слышать ультразвук – это даже не четверть проблемы. Представляете, какие симпатичные личико и ушки понадобятся таким бэтменам?
На втором месте – не дающий покоя прожектерам вопрос: "Почему бы не встроить в человека фотосинтез? Полностью о хлебе забыть, конечно, не удастся, но если хотя бы на 10% снизятся расходы на питание – это уже большое достижение".
Не помешали бы и крылья, как у летучей мыши, – для увеличения фотосинтезирующей поверхности. Представляете себе этот серо-зеленый ужас, летящий на работу с портфелем в лапках? А смелой мечте придется отказать по двум причинам: полной неосуществимости и, даже в случае осуществления, – полнейшей нерентабельности.
Наверное, можно вставить в клетку животного ген, кодирующий хлорофилл. Возможно, несчастные жертвы горе-экспериментаторов – мышки (или мушки и червячки-нематоды: с ними проще работать) сумеют избавляться от этого чужеродного вещества, выживут и даже чуть-чуть позеленеют. Но пользы им от этого точно не будет.
Фотосинтез – это не только хлорофилл. Превращение воды, углекислого газа и солнечного света в углеводы обеспечивают многие сотни белков и кодирующих их генов. Это столь сложный процесс, что я не буду и пытаться его описывать и разбирать по пунктам, какие хлоропласты, тилакоиды и прочие субклеточные структуры нужно понавстраивать в клетки человеческой кожи и какие совершенно чуждые для животного биохимические и анатомические пути придется проложить по всему организму. Да еще так, чтобы не повредить старые. На обеспечение собственно фотосинтеза работает, пожалуй, половина генома растения, а размер его – примерно как у нас с вами. И все эти гены, а главное – закодированные в них белки, процессы и структуры придется разместить в и без того плотно заполненных человеческих хромосомах, клетках и органах.
Совместный труд для пользыИ хлоропласты, и митохондрии миллиарды лет назад были бактериями, которые приспособились жить в клетках других организмов, но не как паразиты, а как полноправные участники симбиоза. Хлоропласты используют солнечную энергию для синтеза АТФ – аденозинтрифосфорной кислоты, универсального клеточного топлива. Энергия, образующаяся при обратном отщеплении от нее фосфорного остатка (с образованием АДФ – аденозиндифосфорной кислоты), идет на синтез глюкозы. Из нее в хлоропласте (тоже за счет энергии, запасенной в АТФ) днем образуется глюкоза, а из нее – крахмал (он нужен только для того, чтобы хлоропласт и клетка в целом не лопнули из-за осмотического давления, вызванного растворимыми моно– и дисахарами). Ночью крахмал снова разлагается до глюкозы, из которой образуется сахароза (димер глюкозы и фруктозы – а ее тоже надо синтезировать, потратив энергию). Сахароза за счет осмотического градиента удаляется из клетки и по сосудам попадает в запасающие органы (их-то мы с вами и едим). Освободившись от накопленного, клетка способна снова приступить к утреннему фотосинтезу. Использовать АТФ напрямую для собственных нужд растительная клетка не может: хлоропласты выпускают в цитоплазму не АТФ, а сахарозу. Специальные ферменты разлагают ее обратно в глюкозу, которая поступает в митохондрии. В них глюкоза окисляется до CO2 и H2O, из которых образовалась, а высвобождающаяся энергия снова тратится на синтез АТФ, которую клетка использует ночью, в жару и в другие периоды прекращения или замедления фотосинтеза. А на рост в высоту и толщину, образование запасов крахмала, белков и жиров в клубнях и семенах и прочие "налоги", то есть нужды организма в целом, остается только то, что не потратят внутриклеточные посредники, перечисляя друг другу энергию в разных материальных валютах (да еще и с учетом НДС – затрат энергии на каждом из этапов). Чтобы шелестеть листьями на ветру, энергии фотосинтеза хватит, а вот в футбол играть и тем более думать…
Например, для обеспечения синтеза хлорофилла нужно много азота и магния. Будем принимать таблетки минеральных удобрений? Для начала вам обеспечен непрерывный понос (соли магния, в том числе всем известная английская, или горькая, соль, – прекрасное слабительное). Нитраты и нитриты в крови разрушают гемоглобин, а в кишечнике под действием желчных кислот превращаются в канцерогенные нитрозамины. Значит, в пищеварительном тракте нужно обеспечить быстрое связывание минеральных солей в нейтральные соединения, их направленный транспорт к коже и высвобождение в хлоропластах (и на все это понадобится дополнительный расход энергии). А кишечник придется радикально перестроить – может быть, вырастить в нем небольшие корешки?
И остальную анатомию придется менять. В частности, на коже придется понаделать устьиц. Это такие сложно устроенные дырочки, через которые растения ночью дышат (совсем как мы – поглощают кислород и выделяют углекислый газ), а днем – и дышат (так же, как ночью), и поглощают необходимый для фотосинтеза углекислый газ, выводят выделяющийся при этом кислород и испаряют воду, чтобы отвести избыток тепла. Солнце не только освещает, но и перегревает растения, плюс при возбуждении молекулы хлорофилла квантом света происходит локальное повышение температуры на несколько десятков градусов. Воду этот гуманоид будет пить ведрами и на яркое солнце не высовываться – иначе сработают те же механизмы, которые у растений прекращают фотосинтез при нехватке влаги, перегреве и избыточном освещении. Кстати, придется перестроить и весь водно-солевой обмен, включая строение почек. Потовые железы – убрать: пот зальет устьица, да еще и сработает как линзы, сжигающие клетки (на солнцепеке растения, как известно, не поливают). А для компенсации в жару мы будем часто-часто дышать, высунув язык – как собаки. И так далее.