А. Красько - Схемотехника аналоговых электронных устройств
U'см = φT·ln(Iэбо1/Iэбо2),
U"см = 2·φT·ΔRк/Rк.
Зависимость Uсм от температуры представляется еще одним точностным параметром - температурной чувствительностью. Температурная чувствительность dUсм/dT имеет размерность мкВ/град и определяется как разность ТКН эмиттерных переходов транзисторов плеч и уменьшается пропорционально уменьшению Uсм.
Следующим точностным параметром ДУ является ток смещения ΔIвх, представляющий собой разбаланс (разность) входных токов (токов баз транзисторов). Протекая через сопротивление источника сигнала Rг, ток смещения создает на нем падение напряжения, действие которого равносильно ложному дифференциальному сигналу. Ток смещения можно представить как
ΔIвх = Iэ01/H21Э1 – Iэ02/H21Э2.
Средний входной ток Iвх ср также является точностным параметром ДУ. Его можно представить как
Iвх ср = (Iб01 + Iб02)/2 = Iэ0/2H21Э.
Протекая через Rг, ток Iвх срсоздает на нем падение напряжения, действующее как синфазный входной сигнал. Хотя и ослабленное в KUсф раз, оно все же вызовет на выходе ДУ разбаланс потенциалов.
Температурные зависимости тока смещения и среднего входного тока можно учесть через температурную зависимость H21Э. Отметим, что обычно Iвх ср>ΔIвх.
В ДУ на ПТ основным точностным параметром является Uсм, которое обычно больше, чем в ДУ на БТ.
В настоящее время ДУ представляют собой основной базовый каскад аналоговых ИМС, в частности, ДУ является входным каскадом любого операционного усилителя.
6. ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ
6.1. Общие сведения
Операционным усилителем (ОУ) принято называть интегральный усилитель постоянного тока с дифференциальным входом и двухтактным выходом, предназначенный для работы с цепями обратных связей. Название усилителя обусловлено первоначальной областью его применения — выполнением различных операций над аналоговыми сигналами (сложение, вычитание, интегрирование и др.). В настоящее время ОУ выполняют роль многофункциональных узлов при реализации разнообразных устройств электроники различного назначения. Они применяются для усиления, ограничения, перемножения, частотной фильтрации, генерации, стабилизации и т.д. сигналов в устройствах непрерывного и импульсного действия.
Необходимо отметить, что современные монолитные ОУ по своим размерам и цене незначительно отличаются от отдельных дискретных элементов, например, транзисторов. Поэтому выполнение различных устройств на ОУ часто осуществляется значительно проще, чем на дискретных элементах или на усилительных ИМС.
Идеальный ОУ имеет бесконечно большой коэффициент усиления по напряжению (Kи ОУ=∞), бесконечно большое входное сопротивление, бесконечно малое выходное сопротивление, бесконечно большой КОСС и бесконечно широкую полосу рабочих частот. Естественно, что на практике ни одно из этих свойств не может быть осуществлено полностью, однако к ним можно приблизиться в достаточной для многих областей мере.
На рисунке 6.1 приведено два варианта условных обозначений ОУ — упрощенный (а) и с дополнительными выводами для подключения цепей питания и цепей частотной коррекции (б).
Рисунок 6.1. Условные обозначения ОУ
На основе требований к характеристикам идеального ОУ можно синтезировать его внутреннюю структуру, представленную на рисунке 6.2.
Рисунок 6.2. Структурная схема ОУ
Упрощенная электрическая схема простого ОУ, реализующая структурную схему рисунка 6.2, показана на рисунке 6.3.
Рисунок 6.3. Схема простого ОУ
Данная схема содержит входной ДУ (VT1 и VT2) с токовым зеркалом (VT3 и VT4), промежуточные каскады с ОК (VT5) и с ОЭ (VT6), и выходной токовый бустер на транзисторах VT7 и VT8. ОУ может содержать цепи частотной коррекции (Cкор), цепи питания и термостабилизации (VD1, VD2 и др.), ИСТ и т.д. Двухполярное питание позволяет осуществить гальваническую связь между каскадами ОУ и нулевые потенциалы на его входах и выходе в отсутствии сигнала. С целью получения высокого входного сопротивления входной ДУ может быть выполнен на ПТ. Следует отметить большое разнообразие схемных решений ОУ, однако основные принципы их построения достаточно полно иллюстрирует рисунок 6.3.
6.2. Основные параметры и характеристики ОУ
Основным параметром ОУ коэффициент усиления по напряжению без обратной связи Ku ОУ, называемый также полным коэффициентом усиления по напряжению. В области НЧ и СЧ он иногда обозначается Ku ОУ0 и может достигать нескольких десятков и сотен тысяч.
Важными параметрами ОУ являются его точностные параметры, определяемые входным дифференциальным каскадом. Поскольку точностные параметры ДУ были рассмотрены в подразделе 5.5, то здесь ограничимся их перечислением:
◆ напряжение смещения нуля Uсм;
◆ температурная чувствительность напряжения смещения нуля dUсм/dT;
◆ ток смещения ΔIвх;
◆ средний входной ток Iвх ср.
Входные и выходные цепи ОУ представляются входным RвхОУ и выходным RвыхОУ сопротивлениями, приводимыми для ОУ без цепей ООС. Для выходной цепи даются также такие параметры, как максимальный выходной ток IвыхОУ и минимальное сопротивление нагрузки Rн min, а иногда и максимальная емкость нагрузки. Входная цепь ОУ может включать емкость между входами и общей шиной. Упрощенные эквивалентные схемы входной и выходной цепи ОУ представлены на рисунке 6.4.
Рисунок 6.4. Простая линейная макромодель ОУ
Среди параметров ОУ следует отметить КОСС и коэффициент ослабления влияния нестабильности источника питания КОВНП=20lg·(ΔE/ΔUвх). Оба этих параметра в современных ОУ имеют свои значения в пределах (60…120)дБ.
К энергетическим параметрам ОУ относятся напряжение источников питания ±E, ток потребления (покоя) IП и потребляемая мощность. Как правило, IП составляет десятые доли — десятки миллиампер, а потребляемая мощность, однозначно определяемая IП, единицы — десятки милливатт.
К максимально допустимым параметрам ОУ относятся:
◆ максимально возможное (неискаженное) выходное напряжение сигнала Uвых max (обычно чуть меньше Е);
◆ максимально допустимая мощность рассеивания;
◆ рабочий диапазон температур;
◆ максимальное напряжение питания;
◆ максимальное входное дифференциальное напряжение и др.
К частотным параметрам относится абсолютная граничная частота или частота единичного усиления fT (F1), т.е. частота, на которой Ku ОУ=1. Иногда используется понятие скорости нарастания и времени установления выходного напряжения, определяемые по реакции ОУ на воздействие скачка напряжения на его входе. Для некоторых ОУ приводятся также дополнительные параметры, отражающие специфическую область их применения.
Амплитудные (передаточные) характеристики ОУ представлены на рисунке 6.5 в виде двух зависимостей Uвых=f(Uвх) для инвертирующего и неинвертирующего входов.
Когда на обоих входах ОУ Uвх=0, то на выходе будет присутствовать напряжение ошибки Uош, определяемое точностными параметрами ОУ (на рисунке 6.5 Uош не показано ввиду его малости).
Рисунок 6.5. АХ ОУ
Частотные свойства ОУ представляются его АЧХ, выполненной в логарифмическом масштабе, Ku ОУ=φ(lg f). Такая АЧХ называется логарифмической (ЛАЧХ), ее типовой вид приведен на рисунке 6.6 (для ОУ К140УД10).
Рисунок 6.6. ЛАЧХ и ЛФЧХ ОУ К140УД10
Частотную зависимость Ku ОУ можно представить в виде: