KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Компьютерное "железо" » Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия

Михаил Гук - Аппаратные интерфейсы ПК. Энциклопедия

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Михаил Гук, "Аппаратные интерфейсы ПК. Энциклопедия" бесплатно, без регистрации.
Перейти на страницу:

♦ HSP — джампер, заземляющий линию DASP# (положение, взаимоисключающее ACT). Устанавливается на устройстве 1 для сигнализации о его присутствии (встречается редко).

Для полностью ATA-совместимых дисков правильно сконфигурированные устройства определяются автоматически. Современные контроллеры ATA позволяют подключать даже единственное устройство как ведомое — интерфейсные функции ведущего берет на себя контроллер.

Разобраться с джамперами старых устройств трудно, если нет документации, однако обширная база данных по разным моделям встроена в справочный файл утилиты Disk Manager. У современных устройств лишние джамперы упразднили, а существующие комментируются на наклейке (шильдике). Если джамперы устанавливаются рядом с интерфейсным разъемом, вероятно, они расположены в соответствии со стандартом ATA (см. рис. 9.5).

ВНИМАНИЕ

Следует учитывать, что перестановка джамперов часто воспринимается устройством только по включении питания. Кроме того, установка на один ленточный кабель двух разнотипных устройств, если они не являются ATA-устройствами, часто невозможна.

9.2.2. Последовательный интерфейс Serial ATA

Параллельный интерфейс ATA исчерпал свои ресурсы пропускной способности, достигшей 100 Мбайт/с в режиме UltraDMA Mode 5. Для дальнейшего повышения пропускной способности интерфейса (но, конечно же, не самих устройств хранения, которые имеют гораздо меньшие внутренние скорости обмена с носителем) было принято решение о переходе на последовательный интерфейс. Цель перехода — улучшение и удешевление кабелей и коннекторов, улучшение условий охлаждения устройств внутри системного блока (избавление от широкого шлейфа), обеспечение возможности разработки компактных устройств, облегчение конфигурирования устройств пользователем. Попутно расширяется адресация блоков (достижение предельной емкости адресации ATA в 137 Гбайт не за горами). Спецификация Serial ATA версии 1.0 опубликована в 2001 г. и доступна в Сети по адресу www.serialata.org. Сейчас уже ведутся работы над новой спецификацией Serial ATA II с большей пропускной способностью и специальными средствами для поддержки сетевых устройств хранения. Приведенная ниже информация относится к версии 1.0.

Интерфейс Serial ATA является хост-центрическим, в нем определяется только взаимодействие хоста с каждым из подключенных устройств, а взаимодействие между ведущим и ведомым устройствами, свойственное традиционному интерфейсу ATA, исключается. Программно хост видит множество устройств, подключенных к контроллеру, как набор каналов ATA, у каждого из которых имеется единственное ведущее устройство. Имеется возможность эмуляции пар устройств (ведущее — ведомое) на одном канале, если такая необходимость возникнет. Программное взаимодействие с устройствами Serial ATA практически совпадает с прежним, набор команд соответствует ATA/ATAPI-5. В то же время аппаратная реализация хост-адаптера Serial ATA сильно отличается от примитивного (в исходном варианте) интерфейса ATA. В параллельном интерфейсе ATA хост-адаптер был простым средством, обеспечивающим программное обращение к регистрам, расположенным в самих подключенных устройствах. В Serial ATA ситуация иная: хост-адаптер имеет блоки так называемых «теневых» регистров (Shadow Registers), совпадающих по назначению с обычными регистрами устройств ATA. Каждому подключенному устройству соответствует свой набор регистров. Обращения к этим теневым регистрам вызывают процессы взаимодействия хост-адаптера с подключенными устройствами и исполнение команд.

В стандарте рассматривается многоуровневая модель взаимодействия хоста и устройства, где прикладным уровнем является обмен командами, информацией о состоянии и хранимыми данными. На физическом уровне для передачи информации между контроллером и устройством используются две пары проводов. Данные передаются кадрами, транспортный уровень формирует и проверяет корректность информационных структур кадров (Frame Information Structure, FIS). Для облегчения высокоскоростной передачи на канальном уровне данные кодируются по схеме 8B/10B (8 бит данных кодируются 10-битным символом) и скремблируются, после чего по физической линии передаются по простейшему методу NRZ (уровень сигнала соответствует передаваемому биту). Между канальным и прикладным уровнем имеется транспортный уровень, отвечающий за доставку кадров. На каждом уровне имеются свои средства контроля достоверности и целостности.

В первом поколении Serial ATA данные по кабелю передаются со скоростью 1500 Мбит/с, что с учетом кодирования 8B/10B обеспечивает скорость 150 Мбайт/с (без учета накладных расходов протоколов верхних уровней). В дальнейшем планируется повышать скорость передачи, и в интерфейсе заложена возможность согласования скоростей обмена по каждому интерфейсу в соответствии с возможностями хоста и устройства, а также качеством связи. Хост-адаптер имеет средства управления соединениями, программно эти средства доступны через специальные регистры Serial ATA.

В стандарте предусматривается управление энергорежимом интерфейсов. Каждый интерфейс кроме активного состояния может находиться в состояниях PARTIAL и SLUMBER с пониженным энергопотреблением, для выхода из которых требуется заметное время (10 мс).

Команды, требующие передачи данных, могут исполняться в различных режимах обмена. Обращение в режиме PIO и традиционный способ обмена по DMA (legacy DMA) выполняется аналогично привычному интерфейсу ATA. Однако внутренний протокол обмена между хост-адаптером и устройствами позволяет передавать между ними разноплановую информацию (структуры FIS определены не только для команд, состояния и собственно хранимых данных). В приложении D к спецификации описывается весьма своеобразный способ обмена по DMA, который предполагается основным (First-party DMA) для устройств Serial ATA. В традиционном контроллере DMA адаптера ATA для каждого канала имеется буфер, в который перед выполнением операции обмена загружают дескрипторы блоков памяти, участвующей в обмене (см. п. 9.2.1). Теперь же предполагается, что адресная информация, относящаяся к оперативной памяти хост компьютера, будет доводиться до устройства хранения, подключенного к адаптеру Serial ATA. Эта информация из устройства хранения при исполнении команд обмена выгружается в контроллер DMA хост-адаптера и используется им для формирования адреса текущей передачи. Мотивы и полезность этого нововведения не совсем понятны; расплатой за некоторое упрощение хост-адаптера (особенно многоканального) является усложнение протокола и расширение функций, выполняемых устройством хранения. Все-таки более привычно традиционное разделение функций, при котором задача устройств внешней памяти — хранить данные, «не интересуясь» тем, в каком месте оперативной памяти компьютера они должны находиться при операциях обмена.

Физический интерфейс Serial ATA

Последовательный интерфейс ATA, как и его параллельный предшественник, предназначен для подключений устройств внутри компьютера. Длина кабелей не превышает 1 м, при этом все соединения радиальные, каждое устройство подключается к хост-адаптеру своим кабелем. В стандарте предусматривается и непосредственное подключение устройств к разъемам кросс-платы с возможностью «горячей» замены. Стандарт определяет новый однорядный двухсегментный разъем с механическими ключами, препятствующими ошибочному подключению. Сигнальный сегмент имеет 7 контактов (S1-S7), питающий — 15 (P1-Р15); все контакты расположены в один ряд с шагом 1,27 мм. Назначение контактов приведено в табл. 9.11. Малые размеры разъема (полная длина — около 36 мм) и малое количество цепей облегчают компоновку системных плат и карт расширения. Питающий сегмент может отсутствовать (устройство может получать питание и от обычного 4-контактного разъема ATA). Вид разъемов приведен на рис. 9.6. Для обеспечения «горячего» подключения контакты разъемов имеют разную длину, в первую очередь соединяются контакты «земли» Р4 и Р12, затем остальные «земли» и контакты предзаряда конденсаторов в цепях питания P3, Р7 и Р13 (для уменьшения броска потребляемого тока), после чего соединяются основные питающие контакты и сигнальные цепи.


Таблица 9.11. Разъем Serial ATA

Контакт Цепь Назначение S1 GND Экран S2 А+ Дифференциальная пара сигналов А S3 А- Дифференциальная пара сигналов А S4 GND Экран S5 В- Дифференциальная пара сигналов В S6 В+ Дифференциальная пара сигналов В S7 GND Экран Ключи и свободное пространство P1 V33 Питание 3,3 В P2 V33 Питание 3,3 В P3 V33 Питание 3,3 В, предзаряд Р4 GND Общий P5 GND Общий P6 GND Общий Р7 V5 Питание 5 В, предзаряд Р8 V5 Питание 5 В P9 V5 Питание 5 В P10 GND Общий Р11 Резерв   Р12 GND Общий Р13 V12 Питание 12В, предзаряд P14 V12 Питание 12 В Р15 V12 Питание 12 В

Рис. 9.6. Разъемы Serial ATA: a — полный разъем на устройстве, б — сигнальный сегмент кабельного разъема, в — питающий сегмент кабельного разъема, г — сигнальный сегмент разъема хост-адаптера, д — разъем хоста для непосредственного подключения устройства

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*