Авинаш Диксит - Теория игр. Искусство стратегического мышления в бизнесе и жизни
Различные исследователи сделали свой выбор во всех этих случаях и, как и следовало ожидать, получили разные результаты. Питер Рейсс и Фрэнк Волак из Стэнфордского университета тщательно проанализировали результаты и вынесли смешанный вердикт: «Плохая новость состоит в том, что базовые экономические закономерности могут сделать эмпирические модели чрезвычайно сложными. Хорошая новость – в том, что предпринятые попытки уже обнаружили проблемы, решением которых необходимо заняться»[59]. Иными словами, подобные исследования необходимо продолжить.
Перспективное направление для проведения эмпирических исследований касается аукционов, в ходе которых небольшое число стратегически подготовленных компаний ведут борьбу за такие позиции, как частоты мобильной связи. Во время таких аукционов асимметричность информации – самая серьезная проблема как для участников аукциона, так и для его организатора. Мы обсудим аукционы в главе 10, после того как рассмотрим тему информации в играх в главе 8. Здесь же только хотим отметить, что в области эмпирического анализа игр с аукционами уже достигнуты значительные успехи[60].
Что говорят лабораторные эксперименты о прогнозирующей способности теории игр? Здесь тоже выводы неоднозначны. К числу первых опытов такого рода принадлежат рыночные эксперименты Вернона Смита, который получил поразительно перспективные результаты как для теории игр, так и для экономической теории. В ходе исследований небольшое число торговцев, не имеющих достоверных сведений о затратах или о цене продукции друг друга, смогли быстро добиться равновесного обмена.
В ходе экспериментов с играми других типов были получены результаты, которые противоречили теоретическим прогнозам. Например, в игре, в которой один участник делает другому ультимативное предложение о разделе определенной суммы денег между ними двумя, предложения были на удивление щедрыми. А в играх с дилеммой заключенных игроки вели себя достойно гораздо чаще, чем можно было предположить согласно теории. Мы говорили об этом в главах 2 и 3 и пришли к выводу, что предпочтения или оценки участников этих игр отличаются от сугубо эгоистичных предпочтений, на которых раньше опиралась экономическая теория. Этот вывод сам по себе очень интересен и важен; с другой стороны, если учитывать социальные предпочтения игроков и их заботу о других людях, такие теоретические концепции, как метод обратных рассуждений в играх с последовательными ходами и равновесие Нэша в играх с параллельными ходами, вполне могут объяснить полученные результаты.
Если в игре присутствует не одно равновесие Нэша, перед игроками возникает еще одна задача: найти фокальную точку или любым другим способом выбрать одно из возможных равновесий. Насколько успешно они справятся с этой задачей, зависит от конкретных условий. Если игроки в равной степени осознают необходимость того, чтобы их ожидания сошлись в одной точке, они смогут добиться благоприятного исхода игры; в противном случае равновесия в игре может вообще не быть.
В ходе большинства экспериментов испытуемые не имеют опыта участия в соответствующей игре. Поначалу поведение новичков не согласуется с теорией равновесия, но по мере накопления опыта оно приближается к предпосылкам этой теории. Впрочем, некоторая определенность в отношении действий другого игрока все же сохраняется; при этом эффективная концепция равновесия должна помочь игрокам распознать эту неопределенность и отреагировать на нее. Одна из таких расширенных версий равновесия Нэша становится все более популярной. Речь идет о концепции квантильного равновесия, разработанной профессорами Калифорнийского технологического института Ричардом Маккелви и Томасом Палфри. Эта концепция носит слишком специальный характер, чтобы описывать ее в данной книге; тем читателям, которые захотят ознакомиться с ней, мы рекомендуем обратиться к первоисточнику[61].
Тщательно изучив научные работы по данной теме, два ведущих исследователя в сфере экспериментальной экономики – Чарльз Холт из Вирджинского университета и Элвин Рот из Гарвардского университета – сформулировали следующий сдержанно-оптимистичный прогноз: «За последние 20 лет понятие равновесия Нэша стало неотъемлемым элементом инструментария экономистов, социологов и бихевиористов. <…> Несмотря на все изменения, обобщения и уточнения, именно с базовой концепции равновесия Нэша начинается (а порой и заканчивается) анализ стратегических взаимодействий»[62]. Мы считаем эту позицию абсолютно правильной и рекомендуем своим читателям придерживаться именно такого подхода. Изучая игры или участвуя в них, начинайте с равновесия Нэша, а затем проанализируйте причины того, как и почему результат игры отличается от прогнозов, полученных согласно теории Нэша. Такой двойственный подход позволит вам лучше понять реальную игру или добиться более весомых успехов в ней, чем любая позиция отрицания или слепая приверженность равновесию Нэша.
Учебный пример: выигрывает тот, кто ближе к половине
Равновесие Нэша возможно при выполнении двух следующих условий:
• каждый игрок выбирает оптимальный ответный ход на то, что, по его мнению, сделает другой участник игры;
• субъективная оценка каждого игрока верна. Каждый игрок делает именно то, что он и должен делать, по мнению всех остальных.
Такой результат проще описать на примере игры с участием двух игроков. Наши два игрока, Эйб и Би, составили свое мнение о том, что сделает другой. На основании субъективной оценки они выбирают действия, которые позволят им получить максимальный выигрыш. Эта оценка оказалась правильной: оптимальный ответный ход Эйба на то, что, по его мнению, сделает Би, совпадает с оценкой Би его действий, а оптимальный ответный ход Би на то, что, по ее мнению, сделает Эйб, совпадает с ожиданиями Эйба в отношении ее действий.
Рассмотрим эти два условия в отдельности. Первое вполне естественно, иначе пришлось бы допустить, что кто-то из игроков действует не наилучшим образом с точки зрения его же собственной оценки ситуации. Если у него есть более выигрышный вариант, почему бы не использовать его?
Разногласия возникают главным образом в отношении второго условия – что каждый делает именно то, что он и должен делать по мнению всех остальных. У Шерлока Холмса и профессора Мориарти с этим не было проблем:
– Все, что я хотел вам сказать, вы уже угадали, – сказал он.
– В таком случае вы, вероятно, угадали мой ответ.