Авинаш Диксит - Теория игр. Искусство стратегического мышления в бизнесе и жизни
Немного истории
В этой и предыдущей главах мы привели несколько примеров игр, которые стали классическими. Безусловно, о дилемме заключенных знают все. Однако игра с двумя охотниками из каменного века, которые пытаются встретиться для совместной охоты, почти так же известна. Жан-Жак Руссо описал практически идентичный сценарий этой игры, хотя у него, конечно же, не было Флинтстоунов{72}, чтобы сделать этот сценарий более красочным.
Игра со встречей охотников отличается от дилеммы заключенных, поскольку лучший ответный ход Фреда состоит в том, чтобы сделать то же, что сделает Барни (и наоборот), тогда как в игре с дилеммой заключенных и у Фреда, и у Барни была бы своя доминирующая стратегия: только один вариант возможных действий (скажем, охота на кролика) был бы оптимальным для каждого игрока независимо от того, что сделает другой. Между этими играми есть еще одно различие: в игре со встречей охотников Фред выбрал бы охоту на оленя, если бы мог убедиться (посредством прямого общения или благодаря существованию фокальной точки) в том, что Барни тоже выберет охоту на оленя, и наоборот. По этой причине данную игру часто называют игрой на доверие.
Руссо описывал эту идею не на языке теории игр, и его формулировка оставляет смысл игры открытым для разных интерпретаций. В интерпретации Мориса Крэнстона в качестве крупного зверя выступает олень, а формулировка самой задачи выглядит так: «Если охотились на оленя, то каждый понимал, что для этого он обязан оставаться на своем посту; но если вблизи кого-либо из охотников пробегал заяц, то не приходилось сомневаться, что этот охотник без зазрения совести пустится за ним вдогонку и, настигнув свою добычу, не станет сокрушаться о том, что лишил добычи своих товарищей»[54]. Разумеется, если другие охотники отправились в погоню за зайцем, больше ни одному охотнику не было смысла преследовать оленя. Тем не менее в более распространенной интерпретации это игра на доверие, в которой каждый охотник предпочитает присоединиться к охоте на оленя, если все остальные поступят так же.
В той версии игры в труса, которая стала знаменитой благодаря фильму Rebel Without a Cause («Бунтарь без идеала»), два парня едут на своих автомобилях параллельно друг другу по направлению к крутому обрыву; трусом станет тот, кто первым выпрыгнет из машины. Бертран Рассел и другие ученые использовали эту игру в качестве метафоры ядерной конфронтации. Томас Шеллинг подробно описал ее в своей новаторской работе по теории игр, посвященной анализу стратегических ходов; мы вернемся к этой теме в главе 6.
Насколько нам известно, игра «семейный спор» не имеет таких корней в философии или массовой культуре. О ней идет речь в книге Данкана Люче и Говарда Райффа Games and Decisions («Игры и решения») – первой классической книге по формальной теории игр[55].
Поиск равновесия Нэша
Как найти равновесие Нэша? Худший из всех возможных способов – анализ каждой ячейки таблицы выигрышей. Если в одной из ячеек оба выигрыша представляют собой оптимальный ответный ход, значит стратегии и выигрыши, соответствующие этой ячейке, образуют равновесие Нэша. Если таблица большая, эта процедура может стать весьма утомительной. Но Бог создал компьютеры именно для того, чтобы спасти людей от столь утомительного анализа и громоздких вычислений. Существует несколько пакетов прикладных программ для поиска равновесия Нэша[56].
Однако в некоторых случаях есть и более короткие пути решения этой задачи; приведем описание одного из них.
Метод последовательного исключения
Вернемся к ценовой игре между компаниями Rainbow’s End и B. B. Lean. Вот таблица выигрышей для этой игры.
RE не знает, какую цену выберет BB. Но RE может определить, какую цену или цены BB не выберет: BB никогда не установит на свой товар цену 42 или 38 долларов. Тому есть две причины (в нашем примере присутствуют обе, но в других ситуациях может быть задействована только одна из причин)[57].
Во-первых, каждая из этих стратегий однозначно хуже для BB, чем любая другая доступная стратегия. Независимо от того, какую стратегию собирается выбрать RE, для BB 41 доллар – это лучше, чем 42, а 39 долларов лучше, чем 38. Для того чтобы понять это, сравните выигрыши в случае выбора стратегии «41 доллар» и стратегии «42 доллара»; то же касается и другой пары стратегий. Сравните пять чисел, соответствующих прибыли BB в случае выбора цены 41 доллар (они выделены темно-серым цветом), с показателями прибыли, полученной в случае выбора цены 42 доллара (они выделены светло-серым цветом).
В каждом из пяти вариантов выбора RE прибыль BB в случае выбора цены 42 доллара будет меньше, чем в случае выбора цены 41 доллар:
43 120 < 43 260 41 360 < 41 580 39 600 < 39 900 37 840 < 38 220 36 080 < 36 540
Следовательно, какими бы ни были ожидания BB в отношении действий RE, BB ни при каких условиях не выберет цену 42 доллара, поэтому RE может смело рассчитывать на то, что BB исключит из рассмотрения стратегию выбора цены 42 и 38 долларов.
Когда одна стратегия (предположим, стратегия А) однозначно хуже для одного из игроков, чем другая (скажем, стратегия Б), говорят, что стратегия А доминируемая по отношению к стратегии Б. Если такая ситуация действительно наблюдается, этот игрок ни при каких обстоятельствах не применит стратегию А, хотя использует ли он стратегию Б, остается только гадать. В таком случае другой игрок может с уверенностью строить свои рассуждения, опираясь на эту информацию; в частности, ему нет необходимости анализировать стратегию, которая была бы оптимальным ответным ходом только на стратегию А. Следовательно, в процессе поиска решения этой игры можно полностью исключить доминируемые стратегии из рассмотрения. Это позволяет сократить размер таблицы игры и упростить ее анализ{73}.
Второй способ исключения доминируемых стратегий и упрощения анализа таблицы игры сводится к тому, чтобы найти стратегии, которые ни при каких условиях не могут стать оптимальным ответным ходом на любой выбор, сделанный другим игроком. В данном примере выбор цены 42 доллара не может быть оптимальным ответным ходом BB на любой выбор RE в пределах того диапазона цен, который мы здесь рассматриваем. Следовательно, RE может смело рассуждать так: «Что бы ни думали в BB по поводу моего выбора, они ни за что не выберут цену 42 доллара».
Очевидно, что любая доминируемая стратегия ни при каких обстоятельствах не может быть оптимальным ответным ходом. Полезнее проанализировать вариант, когда BB выберет цену 39 долларов. Эта стратегия может быть почти при любых условиях исключена из рассмотрения по той причине, что она не может быть оптимальным ответным ходом. Выбор цены 39 долларов оптимален только в случае, если RE выберет цену 38 долларов. Если мы знаем, что стратегия 38 долларов доминируемая, мы можем сделать вывод о том, что выбор BB цены 39 долларов ни при каких условиях не может быть оптимальным ответным ходом на любой ход RE. В таком случае преимущество поиска ответных ходов, не относящихся к числу оптимальных, состоит в возможности исключения тех стратегий, которые не являются доминируемыми, но все равно не подлежат выбору.