KnigaRead.com/
KnigaRead.com » Книги о бизнесе » Управление, подбор персонала » Макс Базерман - Искусство замечать. Секреты наблюдательности истинных лидеров

Макс Базерман - Искусство замечать. Секреты наблюдательности истинных лидеров

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Макс Базерман, "Искусство замечать. Секреты наблюдательности истинных лидеров" бесплатно, без регистрации.
Перейти на страницу:

В корпоративном мире много плохих парней, намеренно преступавших закон. Среди них такие, как Бернард Мэдофф, Джеффри Скиллинг, Кеннет Лэй и Эндрю Фастоу. Но я искренне считаю, что более серьезный вред нанесли многие из нас – те, что ненамеренно совершали нечестные действия, наблюдали, как другие люди преступают нормы морали, и молчали об этом. СМИ привлекли внимание к истории падения Марка Хаузера и Дидерика Стапеля, однако в намеренной подтасовке данных было замечено лишь небольшое количество психологов. Но если подобное мошенничество происходит нечасто, мы не должны успокаиваться на том, что наши собственные работы полностью честны. В научных кругах рождается гораздо более важная история: ученые с самыми благими намерениями подрывают репутацию своей работы и, более того, всю научную область, не понимая, что они что-то делают не так.

Как представители общественных наук, проводящие количественные исследования, так и рецензируемые журналы используют определенный критерий, показывающий, является ли результат статистически значимым. Этот критерий заключается в том, что уровень значимости[7] должен оказаться меньше 0,05. Другими словами, вероятность того, что данный результат получился случайно, будет меньше 5 %. Ученые используют множество различных статистических методов проверки, но критерий р < 0,05 фигурирует в большей их части. Исследователи понимают, что результаты эксперимента должны удовлетворять критерию р < 0,05 – иначе не видать им публикации в ведущих научных журналах. Однако можно увеличить свои шансы на то, что уровень значимости будет меньше 0,05, в частности использовать так называемую степень свободы [9].

Представим себе, что у исследователя есть гипотеза, будто мужчины в целом склонны инвестировать более рискованно, чем женщины [10]. Контроль статистической значимости оправдан, если исследователь выбирает один способ проверки своей гипотезы и заранее решает, сколько мужчин и женщин будут участвовать в эксперименте. И вот вы приводите группу людей в лабораторию и попросите их принять инвестиционное решение: куда вкладывать деньги, в акции или облигации. Обнаружив, что мужчины более склонны выбирать акции, вы получите доказательства в пользу своей гипотезы. Но что если вы предложите участникам исследования акции и облигации с разной степенью риска? Как вы проверите следующее:

1) что мужчины чаще выбирают акции, а женщины – облигации;

2) что мужчины предпочитают акции с более высокой степенью риска, чем женщины;

3) что мужчины предпочитают облигации с более высокой степенью риска, чем женщины;

4) что мужчины в целом готовы пойти на более высокий уровень риска в своих инвестициях, по результатам испытаний тремя различными методами агрегирования, разработанными представителями науки о финансах (4а, 4б и 4в).


Теперь представьте себе, что в вашем эксперименте участвуют 15 мужчин и 15 женщин. Результаты склоняются в предсказанном вами направлении, однако они не соответствуют уровню значимости р < 0,05. Вы вновь проводите эксперимент с другими 15 женщинами и 15 мужчинами. Теперь результаты минимально значимы (уровень значимости колеблется между 0,1 и 0,05), поэтому вы проводите эксперимент еще раз – теперь с 20 мужчинами и 20 женщинами. Наконец, объединив результаты трех экспериментов, вы видите, что мужчины значительно чаще, чем женщины, выбирают инвестиции с большей степенью риска.

Основная идея этого гипотетического примера заключается в том, что исследователь может использовать множество разных выводов для проверки одной идеи; на языке ученых, он может собрать множество зависимых переменных. Если результаты полученного им массива данных близки к уровню значимости, ничто не мешает ему собрать дополнительную информацию – то есть несколько раз попытаться добиться, чтобы результат удовлетворял критерию р < 0,05. Кроме того, часть данных он может исключить (странные ответы, предполагающие, что участники не поняли задание), после того как вся информация собрана, и он видит, что это положительно повлияет на результаты.

В 2011 году исследователи-психологи Джо Симмонс, Лейф Нельсон и Ури Симонсон опубликовали великолепную работу, в которой показали, что использование четырех степеней свободы и доля креативности почти наверняка приведут любые убедительные доказательства к вероятности р < 0,05, даже если проверяемая гипотеза неверна [11]. Даже если для проверки своей идеи множеством разных способов исследователь использует случайные данные, его шанс достичь желаемого эффекта значительно превышает 5 % – и он может затем опубликовать тот вариант, который дал нужные результаты. Симмонс с коллегами демонстрируют, что очень небольшое количество степеней свободы позволяет поднять вероятность получения значимого результата выше 50 % даже с использованием случайных данных. Другими словами, их исследование показывает, что более чем возможно работать в рамках установленных правил и прийти к желаемым, но неверным результатам.

Цитируемые журналы косвенно поддерживают недостоверные методы и подходы, которые встречаются в исследованиях. Они не требуют, чтобы ученые описывали полученные данные и эксперименты полностью, якобы потому, что это займет слишком много места. А чем больше субъективность в данной области, тем выше вероятность использования спорных методов исследований. Это означает, что в общественных науках они встречаются особенно часто.

В своей работе на ту же тему Лесли Джон, Джордж Лоуэнштейн и Дражен Прелеч провели опрос среди исследователей-психологов с использованием сложной процедуры, заставляющей людей отвечать честно. Они задавали вопросы об использовании ряда недостоверных исследовательских методов и подходов [12]. Их интересовало вот что: 1) замалчивание части зависимых величин, полученных в ходе исследования (результатов, которые были оценены); 2) принятие решения о том, собирать ли дополнительные данные, после проверки значимости полученных результатов; 3) замалчивание всех условий или вариантов исследования; 4) прекращение сбора данных раньше, чем предполагалось, поскольку желаемый результат уже получен; 5) округление уровня значимости в желаемую сторону (например, округление 0,054 до 0,05); 6) выборочная публикация результатов экспериментов, которые «сработали», и умолчание о том, что не получилось; 7) принятие решения об исключении данных после оценки влияния этого шага на результаты; 8) сообщение о том, что неожиданное открытие предполагалось с самого начала; 9) лживое заявление, будто на результаты не влияют демографические переменные (такие как пол), и 10) фальсификация данных. Последний пункт – это подтасовка, в которой были замешаны Хаузер и Стапель. Мы же поговорим о девяти других – их считают менее вредоносными.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*