KnigaRead.com/
KnigaRead.com » Книги о бизнесе » Экономика » Инесса Бурханова - Теория статистики: конспект лекций

Инесса Бурханова - Теория статистики: конспект лекций

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Инесса Бурханова, "Теория статистики: конспект лекций" бесплатно, без регистрации.
Перейти на страницу:

1. Общая рентабельность:


где Пб – общая сумма балансовой прибыли;

Ф – среднегодовая стоимость основных производственных фондов и нормируемых оборотных средств.

2. Рентабельность реализованной продукции:


где П р.п. – прибыль от реализации продукции;

С – полная себестоимость реализованной продукции.

Показатели деловой активности предприятия

1. Деловая активность предприятия определяется с помощью показателя общей оборачиваемости капитала:


где В – выручка от реализации продукции;

К – основной капитал предприятия.

Анализ финансовой устойчивости предприятия имеет очень важное значение в условиях рыночной экономики.

Финансовая устойчивость – это способность хозяйствующего субъекта вовремя из собственных средств возмещать затраты вложенные в основной и оборотный капитал, нематериальные активы, и расплачиваться по своим обязательствам, т. е. быть платежеспособным.

Для оценки измерения устойчивости применяются коэффициенты.

1. Коэффициент автономии:


где Сс – собственные средства;

Sс – сумма всех источников финансовых ресурсов.

2. Коэффициент устойчивости:


где Кз – кредиторская задолженность и другие заемные средства.

3. Коэффициент маневренности:

Км = (Сс + ДКЗ – Осв.) / Сс,

где ДКЗ – долгосрочные кредиты и займы;

Осв. – основные средств и иные внеоборотные активы.

4. Коэффициент ликвидности:


где Дса – денежные средства, вложенные в ценные бумаги, запасы товарно–материальных ценностей, дебиторская задолженность; КЗ – краткосрочная задолженность.

ЛЕКЦИЯ № 13. Корреляционно–регрессионный анализ

1. Понятие и виды корреляционного анализа

К. Пирсон и Дж. Юл разработали корреляционный анализ, который по их мнению должен ответить на вопрос о том, как выбрать с учетом специфики и природы анализируемых переменных подходящий измеритель статистической связи (коэффициент корреляции, корреляционное отношение, и т.д.), решить задачу как оценить его числовые значения по уже имеющимся выборочным данным.

Корреляционный анализ поможет: найти методы проверки того, что полученное числовое значение анализируемого измерителя связи действительно свидетельствует о наличии статистической связи; определить структуру связей между исследуемыми k признаками х1, х2,…, хк, сопоставив каждой паре признаков ответ («связь есть» или «связи нет»).

Парный коэффициент корреляции – основной показатель взаимозависимости двух случайных величин, служит мерой линейной статистической зависимости между двумя величинами., он соответствует своему прямому назначению, когда статистическая связь между соответствующими признаками в генеральной совокупности линейна. То же самое относится к частным и множественным коэффициентам корреляции.

Парный коэффициент корреляции, характеризует тесноту связи между случайными величинами х и у, определяется по формуле:


Если р = 0, то между величинами х и у линейная связь отсутствует и они называются некоррелированными.

Коэффициент корреляции, определяемый по вышеуказанной формуле, относится к генеральной совокупности.

Частный коэффициент корреляции характеризует степень линейной зависимости между двумя величинами, обладает всеми свойствами парного, т.е. изменяется в пределах от–1 до +1. Если частный коэффициент корреляции равен ±1, то связь между двумя величинами функциональная, а равенство его нулю свидетельствует о линейной независимости этих величин.

Множественный коэффициент корреляции, характеризует степень линейной зависимости между величиной х1 и остальными переменными (х2 , х3 ), входящими в модель, изменяется в пределах от 0 до 1.

Ординальная (порядковая) переменная помогает упорядочивать статистически исследованные объекты по степени проявления в них анализируемого свойства.

Ранговая корреляция – статистическая связь между порядковыми переменными (измерение статистической связи между двумя или несколькими ранжировками одного и того же конечного множества объектов О1 О2 ,…, Оп .

Ранжировка – это расположение объектов в порядке убывания степени проявления в них k– го изучаемого свойства. В этом случае x(k) называют рангом i – го объекта по k – му признаку. Раж характеризует порядковое место, которое занимает объект Оi в ряду п объектов.

К. Спирмен в 1904г предложил показатель, который служил для измерения степени тесноты связи между ранжировками

х1(k),x2(k),..,xn(k)   и   х1(i),x2(i),..,xn(i)    

В последствии данный коэффициент был назван ранговым коэффициентом К. Спирмен:

2. Методы регрессионного анализа

Термин «регрессия» ввел английский психолог и антрополог Ф.Гальтон.

Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии Д(х), так как исследователь не располагает точным знанием условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.

Рассмотрим взаимоотношение между истинной f(х) = М(у/х). модельной регрессией у и оценкой у регрессии. Пусть результа–тив–ный показатель у связан с аргументом х соотношением:

у=2х1,5 +εi, 

где Ei – случайная величина, имеющая нормальный закон распределения, причем Mε = 0 и dε – δ2.

 Истинная функция регрессии в этом случае имеет вид:

f(х) = М(у/х) = 2х11,5 1,5+εi

Для наилучшего восстановления по исходным статистическим данным условного значения результативного показателя f(х) и неизвестной функции регрессии /(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*