Артур Порджес - Трудная задача. Сборник научно-фантастических произведений
Наконец я спросил:
— Сколько их тут? — я пытался пересчитать, но то и дело сбивался со счета.
— Шестьдесят четыре, — ответил Фарнзуорт. — Как будто.
— Откуда такая неуверенность?
— Да вот… — Он смутился. — Во всяком случае, изготовил-то я шестьдесят четыре кубика, по тридцать два каждого сорта; но почему-то с тех пор мне ни разу но удалось сосчитать их заново. То ли они те… теряются, то ли переходят с места на место, то ли еще что-нибудь.
— Вот как? — это становилось занятно. — А можно потрогать?
— Конечно, — разрешил он. Я взял диковинный предмет в руки и, повертев кубики на шарнирах, увидел, что у многих отсутствует одна грань — в них вошли бы некоторые другие кубики, если бы не мешали шарниры.
Я начал рассеянно прилаживать кубики один к другому.
— Ты мог бы легко пересчитать, если бы пометил каждый, — посоветовал я. — Поочередно. Карандашом, например.
— Между нами, — сказал он и снова вспыхнул, — я уже пробовал. Не тут-то было. В конце концов, оказалось, что номером один помечены шесть кубиков, а номерами два и три — ни одного, зато получились два четвертых номера — на одном из них четверка выведена зеркально и зеленым цветом. — Он помедлил. — А я все помечал красным карандашом. — При этих словах он едва приметно содрогнулся, хотя говорил самым беспечным тоном. — Я стер все цифры мокрой тряпкой и больше… не пробовал.
— Угу, — сказал я. — А как ты это назвал?
— Пентаракт.
Он снова уселся в кресло.
— Разумеется, название это условное. По-моему, пентарактом можно назвать четырехмерный пятигранник, а тут изображен пятимерный куб.
— Изображен? — Вещица показалась мне слишком осязаемой для изображения.
— Понимаешь, не может быть, чтобы он характеризовался пятью измерениями — длиной, шириной, глубиной, еслиной и деньгиной… во всяком случае, так я считаю. — Тут он стал слегка заикаться. — Но мне хо… хотелось со… создать иллюстрацию предмета, имеющего все эти пять измерений.
— И что же это за предмет? — Я покосился на вещицу, лежащую у меня на коленях, и несколько удивился, заметив, что успел вложить довольно много кубиков один в другой.
— Представь себе, — пояснил Фарнзуорт, — что ты выстроишь в ряд множество точек так, чтобы они соприкасались; получишь линию — геометрическую фигуру, характеризующуюся одним измерением. Проведи на плоскости четыре линии под прямыми углами друг к другу; это квадрат — фигура в двух измерениях. Шесть квадратов, расположенные в реальном трехмерном пространстве под прямыми углами друг к другу, образуют куб — фигуру трехмерную. А восемь кубов, вынесенные в четырехмерное физическое пространство, дают четырехмерный гиперкуб, или так называемый тетракт…
— А десять тетрактов образуют пентаракт, — докончил я. — Пятимерное тело.
— Именно. Правда, у нас тут лишь изображение пентаракта. Может быть, таких измерений, как еслина и деньгина, вообще не существует.
— А все же непонятно, что ты подразумеваешь под изображением, — сказал я, с увлечением вертя в руках кубики.
— Непонятно? — переспросил он и поджал губы. — Это довольно трудно объясиить, но попробую. Вот, например, на листке бумаги можно очень похоже нарисовать куб — знаешь, пользуясь законами перспективы, затушевывая тень и все такое. Это ведь изображение трехмерного тела, куба, при помощи только двух измерений.
— И конечно, — заметил я, — мы можем дать развертку, а потом свернуть бумагу в кубик. Тогда получится настоящее трехмерное тело.
Он кивнул:
— Но тогда мы прибегнем к третьему измерению: ведь чтобы свернуть бумагу, надо отогнуть ее кверху. Так что, если только я не научусь свертывать кубики в еслине и деньгине, мой пентаракт останется жалким изображением. Или, точнее, десятью изображениями. Здесь десять тетрактов — изображений четырехмерных тел — соединены между собою и изображают пятимерный гиперкуб.
— Ага! — сказал я чуть растерянно. — И что же ты с ним собираешься делать?
— Да ничего особенного, — ответил он. — Это я просто из любознательности. — Тут он перевел взгляд на меня, вытаращил глаза и вскочил с кресла. — Что ты с ним сотворил?
Я посмотрел, что же у меня в руках. Там были восемь кубиков, сложенных крестом.
— Да ничего, — ответил я, чувствуя себя не в своей тарелке. — Просто я взял и вложил их друг в дружку.
— Не может быть! Начнем с того, что незамкнутых кубиков было всего-навсего двенадцать! У всех остальных по шести граней!
Фарнзуорт стремительно ринулся к своему творению — он явно потерял голову, — да так внезапно, что я отпрянул. Бросок Фарнзуорта оказался неудачным, я выронил вещицу из рук, она упала на пол и основательно ударилась одним из углов. Послышался слабый стук, что-то звякнуло, и вещица очень странно смялась. И вот перед нами на полу остался один-единственный кубик объемом в один кубический дюйм — и больше ничего.
Мы тупо глазели на него с минуту, никак не менее. Потом я встал, оглянулся на сиденье кресла, внимательно осмотрел весь пол, даже опустился на колени и пошарил под креслом. Фарнзуорт следил за мной и, когда я кончил и снова уселся, спросил:
— Больше нет?
— Ни единого кубика, — подтвердил я, — нигде.
— Этого я и боялся. — Фарнзуорт ткнул дрожащим пальцем в сторону оставшегося кубика. — По-видимому, все они здесь.
Его возбуждение постепенно улеглось, — я думаю, ко всему можно привыкнуть. Чуть погодя он задумчиво спросил:
— Что это ты такое говорил насчет того, как можно сделать куб, свернув бумагу с его разверткой?
Я поглядел на него и выдавил из себя извиняющуюся улыбку. Ведь и я подумал о том же самом.
— А ты ведь что-то толковал о другом измерении, которое для этого необходимо?
Он даже не улыбнулся мне в ответ, только буркнул, вставая:
— Ну, навряд ли эта штука кусается. — С этими словами он нагнулся, поднял с пола кубик и подбросил его на ладони, прикидывая вес.
— Похоже, весит ровно столько же, сколько все шестьдесят четыре, — сказал он, окончательно успокоенный. Вгляделся в кубик и вдруг снова разволновался. — Силы небесные! Смотри!
Он протянул мне кубик.
На одной из граней, точнехонько в центре, появилось аккуратное отверстие — кружок диаметром примерно в полдюйма.
Я склонился над кубиком и подметил, что на самом деле отверстие не было круглым. Оно походило на лепестковую диафрагму фотоаппарата — многоугольник, образованный множеством металлических пластинок правильной формы, которые находят одна на другую и как бы сплетаются, но оставляют дырочку, куда проникает свет. В отверстии ничего не было видно, только безграничная чернота.