KnigaRead.com/

Станислав Лем - Библиотека XXI века

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Станислав Лем, "Библиотека XXI века" бесплатно, без регистрации.
Перейти на страницу:

Невозможность составления такой статистики является скорее "практической" нежели принципиальной. Так как она не лежит в самой природе материи, как лежит в ней соотношение неопределенностей Гейзенберга, но "только" в невычислимом наложении различных, взаимно независимых случайных серий, возникающих в различных масштабах величин: галактических, звездных, планетарных, а также молекулярных.

Галактика, интерпретированная как рулетка, на которой "можно выиграть жизнь", не является "честной" рулеткой. Честная рулетка подчиняется точному и одному распределению вероятностей (1 : 36 в каждом розыгрыше). Для рулеток, которые вибрируют, которые меняют свою форму, в которых используются каждый раз новые шарики, нет такого статистического единства. По правде говоря все рулетки и все спиральные галактики подобны друг другу, но не являются в точности одним и тем же. Галактика может себя вести как рулетка рядом с печью, когда печь горяча, нагретый диск рулетки искривляется и из-за этого изменяется распределение выигрышных номеров. Хороший физик измерит влияние температуры на рулетку, но если, кроме того, на нее действует дрожание пола от едущих по улице грузовиков, его измерение окажется недостаточным.

При таком понимании галактическая игра "или смерть, или жизнь" будет игрой на нечестных рулеткой.

Я вспоминаю, как Эйнштейн утверждал, что "Бог не играет с миром в кости". Мы можем теперь дополнить то, что там сказали. Бог не только играет в кости с миром, но ведет справедливую игру -- в точности одинаковыми костями -- только в наименьшем масштабе -- атомном. Галактики же -- это огромные Божьи рулетки, которые не являются честными. Условимся, что, когда речь идет о "честности", подразумевается математический (статистический) смысл, а не какой-то моральный.

Наблюдая определенный радиоактивный элемент, мы можем установить период его полураспада, то есть то, как долго следует ожидать, чтобы половина его атомов подверглась распаду. Этим распадом управляет случайность, статистически честная, если она одна и та же для этого элемента во всем Космосе. Независимо от того, находится ли он в лаборатории, в недрах Земли, в метеорите или в космической мгле. Его атомы ведут себя везде одинаково.

Галактика же, как "устройство, производящее звезды, планеты, а также, иногда, жизнь", делает это -- как лотерейное устройство -- нечестно, так как непредсказуемо. Этими ее творениями не управляет ни детерминизм, ни такой индетерминизм, который мы знаем в квантовом мире. Тот же ход галактической "игры в жизнь" можно узнать ex post, когда выигрыш произошел. Можно воспроизвести то, что уже произошло, хотя с самого начала предвидеть было нельзя. Это можно реконструировать, не совсем точно, но так только, как можно воспроизвести историю человеческих племен из эпохи, когда люди не имели еще письменности и не оставили никаких хроник или документов, а оставили только произведения своих рук, которые откопает археолог. Галактическая археология превращается тогда в "звездно-планетарную археологию". Археология эта занимается разысканием того особенного розыгрыша, великим выигрышем которого являемся мы сами.

II.

Добрых три четверти галактик имеют вид спирального диска с ядром, от которого отходят две ветви, как в нашем Млечном пути. Галактическая система, сложенная из газовых и пылевых туманностей и звезд (которые постоянно возникают в ней и гибнут) вращается, при чем ядро вращается с большей угловой скоростью, чем ветви, которые не поспевают и, собственно по этому, придают целому вид спирали.

Ветви, однако, не двигаются с той же скоростью, что и звезды.

Неизменной форме спирали галактика обязана ВОЛНАМ СГУЩЕНИЯ, в которых звезды играют роль молекул в обычном газе. Имея различные скорости обращения, звезды, значительно удаленные от ядра, отстают от ветви, а звезды, расположенные около ядра догоняют спиральную ветвь и проходят ее насквозь. Скорость ту же самую, что и скорость ветви имеют только звезды, расположенные на половинном расстоянии от ядра. Это -- так называемая синхронная окружность. Газовое облако, из которого должно было возникнуть Солнце с планетами, находилось около пяти миллиардов лет тому назад у внутреннего края спиральной ветви. Облако догоняло эту ветвь с небольшой скоростью -- порядка 1 км/сек. Это облако, вторгнувшееся вглубь волны сгущения, испытало заражение продуктами Сверхновой звезды, которая вспыхнула вблизи него. (Это были изотопы йода и плутония.) Эти изотопы распадались, пока из них не возник другой элемент -- ксенон. В это время облако подверглось сжатию со стороны волны сгущения, в которой оно плыло, что способствовало его конденсации, пока из него не возникла молодая звезда Солнце. Под конец этого периода, около 4,5 миллиарда лет тому назад, вспыхнула поблизости другая Сверхновая звезда, которая вызвала заражение околосолнечной туманности (т.к. не весь протосолярный газ сосредоточился к тому времени в Солнце) радиоактивным алюминием. Это ускорило, а возможно, и вызвало возникновение планет. Как показали моделирующие расчеты, для того, чтобы газовый диск, вращающийся вокруг молодой звезды, подвергся сегментации и начал сосредоточиваться в планеты, необходимо такое "вмешательство извне", как мощный "толчок": им был взрыв Сверхновой, которая вспыхнула в то время не далеко от Солнца.

Откуда обо всем этом известно? Из состава изотопов, содержащихся в метеоритах Солнечной системы; зная период полураспада названных изотопов (йода, плутония, алюминия), можно рассчитать, когда произошло заражение ими протосолярного облака. Произошло это по меньшей мере два раза; разное время распада этих изотопов позволяет определить, что первое заражение от вспышки Сверхновой наступило вскоре после входа протосолярного облака внутрь края галактической ветви, а другое заражение (радиоактивным алюминием) произошло примерно на 300 000 000 лет позднее. Самый ранний период развития, следовательно, Солнце провело в области сильной радиации и бурных ударов, вызывающих планетогенез, а потом, с уже отвердевающими и остывающими планетами, покинуло эту область. Оно вышло в пространство высокого вакуума, изолированного от звездных катастроф и, благодаря этому, жизнь могла развиваться на Земле без убийственных происшествий.

Как следует из этой картины, закон Коперника, по мысли которого Земля не находится (вместе с Солнцем) в каком-то особенно выделенном месте, а находится "где-то", стоит под большим знаком вопроса.

Если бы Солнце находилось на далекой периферии Галактики и, медленно двигаясь, не пересекло ее ветвей, вероятно, у него не возникли бы планеты. Так как планетогенез требует в качестве "акушерских операций" бурных происшествий, а именно мощных ударных волн от Сверхновых в состоянии взрыва (или же, по меньшей мере, одной такой "близкой встречи").

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*