К. Гильзин - Полет на Луну
Но возвратимся к трассе полета Земля — Луна. Когда мы путешествуем на Земле, все равно — по суше или по воде, то обычно в нашем распоряжении всегда много разных возможных маршрутов. Мы выбираем самый короткий или самый интересный маршрут, самый дешевый или самый удобный, самый быстрый или самый верный способ передвижения.
Не менее, конечно, свободен выбор трассы и путешествия межпланетного. Нам заданы только начальный и конечный пункты этого путешествия. Между ними можно провести бесчисленное множество всевозможных маршрутов, различных трасс. И легко видеть, что этих возможностей еще гораздо больше, чем на Земле, — ведь все эти линии трасс идут в пространстве, а не на поверхности!
Чем же руководствоваться, выбирая одну-единственную линию-трассу из всех возможных? Очевидно, условия полета по любой возможной трассе будут одинаковыми — всюду абсолютный вакуум и холод мирового пространства, всюду та же опасность встречи с метеоритами. Все то же. Остается одно — скорее добраться до цели и израсходовать при этом поменьше топлива.
Но, значит, трассу выбрать не так сложно — наилучшая из всех та, для которой время полета наименьшее и расход топлива наименьший И сразу — первая трудность. Нет такой трассы. Мало время полета — велик расход топлива, таков закон межпланетного полета.
Чем больше топлива мы можем израсходовать на полет, тем быстрее совершим его. Правда, пока нам еще рано думать о курьерских перелетах. Мы еще только выходим на межпланетные пути, еще еле-еле справляемся с самым простым и легким полетом — на Луну. Только для этого полета удается, да и то с большим трудом, разместить на корабле нужный запас топлива. Значит, на этом первом этапе самое главное избрать такой маршрут, который потребует наименьшего расхода топлива.
Какую же кривую должен прочертить в мировом пространстве наш корабль, летящий на Луну, чтобы расход топлива оказался наименьшим, — эллипс, параболу или гиперболу?
Мы уже знаем, что корабль, которому при взлете с Земли сообщена скорость отрыва, полетит по параболическому пути; не зря скорость отрыва называют также параболической скоростью. Летя по параболе, корабль в состоянии улететь бесконечно далеко от Земли. Значит, он пересечет орбиту Луны в какой-нибудь точке; остается только рассчитать момент взлета и направление взлетающего корабля так, чтобы в этой точке корабль встретил Луну. Если скорость корабля при взлете с Земли будет больше, чем скорость отрыва, то корабль полетит уже не по параболе, а по другой кривой, также уводящей корабль в бесконечность — по одной из бесчисленного множества возможных гипербол. Чем больше начальная скорость корабля, тем сильнее «раскрыта» гипербола, тем прямее и короче путь корабля к Луне. Именно так и будут совершать свои полеты курьерские корабли будущего — они достигнут цели всего за несколько часов. Пока мы можем только мечтать об этом времени — нам не под силу сообщить кораблю при взлете необходимую для этого огромную скорость. Значит, гипербола исключается, это ясно.
Но и полет по параболе вовсе не является обязательным. Что случится, если конечная скорость корабля при взлете будет несколько меньше скорости отрыва? Тогда корабль полетит уже не по параболе — траектория его полета будет в этом случае эллипсом. Но ведь эллипс — это не разомкнутая кривая, подобно параболе или гиперболе. Эллипс, как и круг, кривая замкнутая. Это значит, что корабль, взлетевший с Земли по эллипсу, обязательно возвратится, раньше или позже, снова на Землю. Этим и интересна параболическая траектория — она является как бы границей между бесчисленными замкнутыми (эллиптическими) и разомкнутыми (гиперболическими) траекториями.
Если скорость, которую корабль наберет при взлете, будет немногим меньше скорости отрыва, он залетит, двигаясь по своей эллиптической орбите, очень далеко от Земли, дальше чем находится от нас Луна. Значит, в этом случае, как и при полете по параболе или гиперболе, корабль пересечет лунную орбиту и если все было рассчитано правильно, встретит в точке пересечения Луну. Такие эллипсы и называются поэтому секущими.
Будем теперь постепенно уменьшать скорость взлетающего корабля. Очевидно, этим самым мы будем уменьшать и то максимальное расстояние, на которое корабль может удалиться от Земли, то есть расстояние до корабля, находящегося, как говорят, в апогее своей эллиптической орбиты. Конечно, мы заинтересованы в том, чтобы скорость корабля была наименьшей, ибо при этом и расход топлива будет наименьшим. На сколько же мы можем уменьшить взлетную скорость корабля по сравнению со скоростью отрыва, чтобы наш корабль все-таки достиг Луны?
На первый взгляд кажется, что таким предельным случаем является полет по эллипсу, который уже не пересечет орбиту Луны, а только коснется ее в апогее (такой эллипс и называется поэтому касательным).
Но это впечатление ошибочно. Можно еще уменьшить взлетную скорость корабля, и он все же достигнет Луны. Как же так, ведь при таком уменьшении скорости эллипс, по которому полетит корабль, уже не будет касаться лунной орбиты, и, значит, корабль не встретится с Луной?
Да, так и случилось бы, если бы Луна не обладала собственным полем тяготения. Но Луна — весьма массивное небесное тело, обладающее значительным притяжением. На расстоянии примерно 40 000 километров от Луны притяжение к ней превосходит притяжение к Земле. Значит, достаточно только нашему кораблю достичь этой зоны, чтобы он изменил направление своего полета и устремился к Луне вместо того, чтобы вернуться на Землю по другой стороне эллипса.
Сколько же можно сэкономить топлива, если лететь не по параболе, а по этому наивыгоднейшему, то есть самому наименьшему эллипсу? Оказывается, что для полета по такому эллипсу скорость корабля при взлете с Земли должна быть всего примерно на 100 метров в секунду меньше, чем скорость отрыва, то есть 11,1 километра в секунду вместо 11,2 километра в секунду. Это кажется даже неправдоподобным и, во всяком случае, очень неожиданным — чтобы перенести корабль с расстояния 340 000 километров от Земли в бесконечность, взлетную скорость надо увеличить всего на 100 метров в секунду.
В этом заключается очень интересная особенность трасс в мировом пространстве. Когда взлетная скорость корабля близка к скорости отрыва, то ничтожное увеличение этой скорости очень сильно наменяет расстояние, которое корабль пролетает, удаляясь от Земли. Вот еще один такой пример. Если при скорости 11,1 километра в секунду корабль залетает на расстояние 340 000 километров от Земли, то для того, чтобы корабль долетел до орбиты Луны, то есть на 40 000 километров дальше, его взлетная скорость должна быть увеличена всего примерно на 10 метров в секунду. Скорость увеличивается на одну тысячную, а дальность полета возрастает на 40 000 километров!