KnigaRead.com/
KnigaRead.com » Фантастика и фэнтези » Альтернативная история » Роберта Голинкофф - Эйнштейн учился без карточек. 45 эффективных игровых упражнений для детей от 0 до 6 лет

Роберта Голинкофф - Эйнштейн учился без карточек. 45 эффективных игровых упражнений для детей от 0 до 6 лет

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Роберта Голинкофф, "Эйнштейн учился без карточек. 45 эффективных игровых упражнений для детей от 0 до 6 лет" бесплатно, без регистрации.
Перейти на страницу:

Возраст: 2–4 года

Вы можете выяснить, пользуется ли ваш ребенок основными принципами счета, дав ему набор предметов. Определите, например, использует ли ваш ребенок количественный принцип. Когда вы спрашиваете: «Сколько здесь собачек (птичек, игрушек…)?», понимает ли ваш ребенок, что ответом является самое большое число, которое он назвал при счете? И готов ли он посчитать что угодно, демонстрируя вам, что он следует принципу абстракции? Попросите ребенка сосчитать предметы, которые можно взять в руку, а затем попросите его сосчитать число облачков в небе или сколько раз вы на этой неделе звонили бабушке. Станет ли он возражать? Или он готов посчитать все, что вы попросите, даже если речь идет о предметах далеких или неосязаемых?

Наконец, проверьте, применяет ли ваш ребенок принцип иррелевантности порядка. Укажите на один предмет в наборе из 5 предметов и попросите его сосчитать, сколько их всего. А затем попросите проделать эту операцию вновь, указав в качестве начала отсчета другой предмет. Приходит ли ребенок оба раза к одному и тому же результату? С готовностью ли он это делает? Спросите ребенка, как ему кажется, почему всегда получается одно и то же число. Не ждите, что он обязательно даст осмысленный ответ, но выяснять, какого рода логическое обоснование ребенок может выдвинуть, интересно и забавно.

К возрасту 3 лет большинство детей оперируют с числами соответственно этим пяти принципам – бóльшую часть времени. Эти принципы формируются в естественном ходе развития и в настоящее время включены в самые ранние математические программы и оценки. Следует ли нам бежать и закупать вспомогательные материалы, чтобы обучить своих детей принципам счета? Нет!

Прежде всего мы не можем научить принципам счета двухлетнего ребенка, даже если захотим (а мы не видим причин, почему вам может этого хотеться). Как вы объясните двухлетнему человечку, что порядок, в котором вы считаете предметы, не имеет значения? Дети приходят к этому самостоятельно и в должное время. А разговор об этих принципах слишком абстрактен, чтобы дети уловили его смысл.

Именно поэтому им необходим физический опыт обращения с окружающими предметами, чтобы разработать эти принципы самостоятельно.

Вы можете играть в «математические» игры с игрушечными машинками, чайными чашками и любыми другими обыденными предметами, которые есть у вас в доме; вам совершенно не нужно покупать ничего специально.

Как учит нас тому принцип абстракции, дети умеют находить неуловимые «числа» повсюду, куда ни бросят взгляд, и если мы будем смотреть вместе с ними, то можем здорово повеселиться, пересчитывая червяков, слизняков и французские тосты (хотя, надеемся, последние и первые не будут в одном и том же наборе!). А вот чтобы вычитать и складывать, действительно нужно нечто большее, чем просто числа. Это подводит нас к следующему шагу – к числовому лучу.

Концепция числового луча

Числа не просто плавают вокруг нас в пространстве. Они определяются своим отношением друг к другу. Чтобы полностью овладеть навыками вроде сложения и вычитания, дети должны понять, что, например, 5 больше 4 на одну единицу и больше 3 на две единицы.

Более того, им придется усвоить, что 5 на одну единицу больше 4, но в то же время на одну единицу меньше 6. Исследования показывают, что это более трудная концепция, и дети осваивают ее между 2,5 и 3 годами.

Даже в 3 года ребенку легче увидеть число в соотношении с намного меньшим и намного большим числом, чем понять, какие отношения существуют между числами, различающимися совсем ненамного.

Например, маленьким детям легче определить отношение между 5 и 1 и между 5 и 8, чем отношение того же числа с 4 и 6.

Вероятно, причина, по которой детям (и взрослым) легче увидеть различия большого порядка, связана с тем, о чем мы говорили выше в связи с математическими способностями младенцев.

Поскольку исследования показывают, что мы начинаем математически мыслить в количественных терминах, вполне резонно предположить, что, когда количественная разница велика, нам гораздо легче вынести суждение, чем когда приходится пользоваться знанием числового луча для составления суждений о небольших различиях.

Для развития этой способности требуется некоторое время. Один из наших детей (Бендж) только к 5 годам по-настоящему понял, почему порции мороженого у его родителей больше, чем у старшего брата, а у старшего брата – больше, чем у него, а у него самого – больше, чем у его младшего брата Майка. Смысл такого распределения стал ему ясен, когда он увидел возраст всех членов семьи отмеченным на числовом луче и убедился, что количество мороженого в порции соотносится с положением каждого на этом луче.

Обучающие моментыЧисловой ряд

Вот два примера для вас: к чему ближе сумма чисел 56 и 75, к 125 или к 150? К чему ближе их сумма, к 130 или к 136? Профессор Станислас Дехен из Национального института здоровья Франции полагает, что первый из этих примеров вам будет проще решить, потому что вы, как и ваши дети, легче проводите приблизительную оценку чисел, отстоящих дальше друг от друга, чем тех, которые требуют более точной математической оценки.

А этот пример для вашего 3–6-летнего ребенка: возьмите 3 набора предметов (один из 3 предметов, второй из 5, а третий из 7) и попросите ребенка сказать вам, какой набор самый большой, а какой самый маленький. Может ли ваш ребенок это сделать?

Поскольку речь идет о сравнении двух наборов, которые значительно различаются по количеству (3 и 7), задача будет не слишком сложной. А теперь спросите ребенка о среднем наборе. Теперь задача станет потруднее, поскольку средний набор ненамного отличается от двух других. Спросите: «Этот набор больше того (укажите на самый маленький)? А вот этого набора он больше или меньше (укажите теперь на самый большой)?» И посмотрите, как ваш ребенок ответит на эти вопросы.

Высшее достижение: счет и сравнение

Чтобы по-настоящему освоить сложение и вычитание, ваш ребенок должен уметь использовать принципы подведения итогов совместно со знаниями о числовом луче. Это означает, что он должен понимать не только то, что в сосчитанном им наборе содержится три шарика, но и что три шарика больше, чем два, но меньше, чем четыре. Этот последний шаг в дошкольной математике большинство детей совершают в возрасте между 5 и 6 годами. Открытие числового луча позволяет детям складывать наборы чисел и понимать, что когда они берут набор из 3 предметов и добавляют к нему набор из 4 предметов, то достигают по числовому лучу значения 7 единиц. Тогда и только тогда ребенок по-настоящему усваивает разницу величин между 3 и 7. Тогда и только тогда ребенок безоговорочно узнает, что сложение и вычитание – это операции, которые происходят в одном и том же континууме, в пределах числового луча. Дети не могут дать сознательное объяснение числовому лучу; это – знание бессознательное, но от этого оно не перестает быть знанием. Развитие понимания числового луча и всего, что он в себя включает, – это наивысшее достижение дошкольника в математике. И наилучший, сопряженный с наименьшим количеством проблем способ, каким ваш ребенок может достичь этой вершины, – это игра и проработка простеньких устных примеров на сложение и вычитание, которые вы решаете в ходе вашей повседневной жизни.

Обучающие моментыДомашняя игра с числовым лучом

У многих настольных игр центральным элементом является числовой луч. Цель этих игр – добраться от начальной позиции к финишу и прийти к нему первым. Пространства-клеточки на игровой доске представляют собой род числового луча, и мы движемся через них, бросая кости. Когда выпадает 6 очков, мы делаем 6 шагов – и сразу оказываемся впереди игрока, который передвинулся только на 3 шага. В таких играх дети учатся не только принципу однозначного соответствия (один шаг соответствует одному очку на стороне игральной кости), но и усваивают принцип числового луча. Они движутся вперед к цели (которую мы можем установить как конкретное число клеточек, скажем 50).

Если хотите как следует пофантазировать, можете даже придумать собственную игру. Нарезав полоски бумаги и сделав на них отметины, представляющие числа от 0 до 50, дети могут следить, как их фишки движутся по числовому лучу к цифровой цели. Искушенный родитель может даже писать указания в клетках, например «вернись назад на 2 клетки», чтобы ребенок мог усваивать отношения между сложением и вычитанием на этой улице с двусторонним движением.

В процессе игры можно задавать ребенку вопросы: кто дальше ушел вперед? Почему? И насколько? Вы уже понимаете, что, играя в эту игру, на развитие навыков счета начинаешь смотреть совершенно по-новому.

Что означают эти исследования для вашего ребенка

Исследования показывают, что даже новорожденные как минимум способны усваивать некоторую информацию о количестве, например: «больше или меньше»; а во второй половине первого года жизни младенцы получают некоторое представление о равенстве. Некоторые исследователи полагают, что в этот ранний период жизни малыши опираются на количество, а не на знание о числе. Но другие считают, что младенцы обладают своего рода рудиментарными знаниями о числах – пока очень маленьких, – которые позднее приведут к развитию способности разбираться в числах вообще.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*