KnigaRead.com/

Неизвестен Автор - Мозг (сборник)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн неизвестен Автор, "Мозг (сборник)" бесплатно, без регистрации.
Перейти на страницу:

Нейронная цепь поведенческого рефлекса втягивания жабры у аплизии показана в виде схемы. Животное рефлекторно втягивает жабру, когда на сифон действует какой-нибудь стимул. Кожу сифона иннервируют 24 сенсорных нейрона; на схеме показаны только восемь из них. Сенсорные нейроны образуют моносинаптические, или прямые, связи с шестью идентифицированными мотонейронами жабры, показанными в ряду, который начинается с L7, и по меньшей мере с одной тормозной клеткой (L16) и с двумя возбуждающими вставочными нейронами (L22 и L23), которые образуют синапсы с мотонейронами.

В привыкании у позвоночных интересно то, что оно порождает и кратковременную и долговременную память и поэтому используется для исследования связи между ними. Мы с Т. Кэрью (Т. Carew) и Г. Пинскером (Н. Pinsker) нашли подобную связь у аплизии. После одного тренировочного опыта, состоящего из 10-15 тактильных раздражений сифона, наступает привыкание рефлекса втягивания. Память на этот стимул кратковременная; через час можно обнаружить частичное восстановление, а через день оно обычно становится почти полным. При таком типе обучения восстановление равнозначно забыванию. Однако при повторении более сложных задач обучения четыре повторных тренировочных опыта, всего лишь по 10 стимулов каждый, вызывают глубокое привыкание и запоминание стимула, которое длится недели.

Первый вопрос, каким задались мы с В. Кастеллучи (V. Castellucci), Купферманом и Пинскером, состоял в следующем: где локализуется кратковременное привыкание и каковы его механизмы? Нейронная цепь, управляющая втягиванием жабры, совсем проста. Стимуляция кожи сифона активирует там 24 сенсорных нейрона; они образуют прямые связи с четырьмя мотонейронами в жабре, а мотонейроны прямо соединены с мышцей. Сенсорные нейроны возбуждают также несколько вставочных, т.е. промежуточных нейронов.

Исследуя эти клетки во время привыкания, мы нашли, что при кратковременном привыкании изменяется сила связи сенсорных нейронов со следующими за ними центральными клетками - вставочными и мотонейронами. Такая локализация была весьма удачной, потому что позволяла исследовать, что происходит при привыкании, путем анализа изменений в обеих клетках пресинаптическом сенсорном нейроне и постсинаптическом мотонейроне - и в единственной группе связей между ними.

Силу связи можно определять, регистрируя синаптическое действие, вызываемое в мотонейронах отдельным сенсорным нейроном. Можно имитировать опыт по тренировке привыкания, состоящей из 10-15 стимулов, непосредственно стимулируя сенсорный нейрон в той же строгой временной последовательности, какая применяется для целого животного. Стимул можно отрегулировать таким образом, чтобы он вызывал один потенциал действия. Когда нейрон отвечает потенциалом действия впервые, он производит весьма эффективное синаптическое действие, которое выражается крупным возбудительным постсинаптическим потенциалом в мотонейроне. Последующие потенциалы действия, создаваемые в сенсорном нейроне во время тренировочного опыта, вызывают все меньшие возбудительные постсинаптические потенциалы. Эта депрессия эффективности связи идет параллельно поведенческому привыканию и определяет его. Как и поведение, синаптическая депрессия, создаваемая одним тренировочным опытом, сохраняется больше часа. После второго такого опыта депрессия синаптического потенциала выражена сильнее, а последующие тренировочные опыты могут подавить синаптический потенциал полностью.

В чем причина изменений силы синаптических связей? Происходит ли изменение в пресинаптическом сенсорном нейроне, которое выражается в пониженном выходе медиатора, или же изменяется постсинаптическая клетка, что выражается в снижении чувствительности рецепторов к медиатору? Ответить на эти вопросы можно, проанализировав изменения амплитуды синаптического потенциала, проявляющиеся в его "квантовых" компонентах.

Процесс привыкания, когда реакция животного на стимул постепенно ослабевает, если он оказывается несущественным, является элементарной формой обучения и памяти, которая обнаруживается на уровне одиночного мотонейрона (М. Н.). Здесь показан такой опыт (А), в котором сенсорный нейрон (С. Н) аплизии образующий синапс на мотонейроне L7, стимулируется каждые 10 секунд Б. Отдельные кадры из двух последовательных тренировочных серий по 15 стимулов каждая, разделенных интервалами по 15 минут, показывают как ответ L7 они жается и исчезает.

Как впервые показали X. дель Кастильо (J. del Castillo) и Б. Катц (В. Katz) в Лондонском университетском колледже, медиатор выделяется не в виде отдельных молекул, а "квантами", или мультимолекулярными пакетами. Все пакеты содержат приблизительно одинаковое количество медиатора (по нескольку тысяч молекул). Как полагают кванты хранятся в субклеточных органеллах, называемых синаптическими пузырьками, которые во множестве видны в синаптических окончаниях на электронных микрофотографиях. Поскольку число молекул медиатора в каждом кванте обычно не меняется, количество квантов высвобождаемых каждым потенциалом действия, служит достаточно надежным показателем общего количества выделившегося медиатора Каждый квант в свою очередь вызывает в постсинаптической клетке миниатюрный постсинаптический потенциал характерной величины Величина эта служит показателем того, насколько чувствительны постсинаптические рецепторы к нескольким тысячам молекул медиатора выделяемым каждым пакетом.

Долговременное привыкание выявляется при сравнении синаптических связей между сенсорным нейроном (С. Н.) и мотонейроном L7 у нетренированной аплизии (контроль, А) и у аплизии, тренированной на долговременное привыкание (Б). У контрольных животных за импульсом в сенсорном нейроне следует крупный возбудительный синаптический ответ мотонейрона. У тренированных животных синаптическую связь почти невозможно обнаружить.

Исследуя аплизию, мы с Кастеллучи, нашли, что снижение амплитуды синаптического потенциала действия по мере привыкания идет параллелъно уменьшению числа выделяющихся химических квантов. Напротив, величина миниатюрного постсинаптического потенциала не менялась, что указывало на неизменность чувствительности постсинаптического рецептора. Эти данные говорят о том, что кратковременное привыкание локализуется в пресинаптических окончаниях сенсорных нейронов и что механизм привыкания состоит в постепенном снижении количества медиатора, высвобождаемого окончаниями сенсорного нейрона на центральных клетках-мишенях. Опыты на раке, проведенные Р. Цукером (R. Zucker) из Калифорнийского университета в Беркли и Ф. Красне (F. Krasne) из Калифорнийского университета в Лос-Анджелесе, а также опыты на кошке, поставленные П. Фейрелом (P. Farel) и Р. Томпсоном (R. Thompson) из Калифорнийского университета в Эр-вине, показывают, что этот механизм может быть универсальным. От чего зависит уменьшение числа квантов, высвобождаемых каждым потенциалом действия? Это число в значительной степени определяется концентрацией свободного кальция в пресинаптическом окончании. Кальций является одним из трех ионов, участвующих в генерации каждого потенциала действия в окончании. Деполяризующий эффект потенциала действия создается главным образом притоком ионов натрия в окончание, но он требует также меньшего и более позднего притока ионов кальция. Реполяризационное действие противоположного знака производится преимущественно выходом ионов калия, а приток кальция нужен для выделения медиатора. Как полагают, кальций придает синаптическим пузырькам способность связываться с пресинаптической мембраной в местах выделения медиатора. Это связывание является критическим этапом, предваряющим выход медиатора из пузырьков (процесс называется экзоцитозом). Возможно поэтому, что количество кальция, приходящее в окончания с каждым потенциалом действия, не фиксировано, а меняется и модулируется привыканием.

Наилучшим способом изучать изменения притока кальция в окончания была бы прямая регистрация активности в окончаниях. Нам не удалось осуществить ее из-за очень малых размеров окончаний. Но поскольку свойства кальциевых каналов в окончаниях сходны с их свойствами в теле клетки, один из наших дипломников М. Клейн (М. Klein) занялся исследованием изменений кальциевого тока в теле клетки, которые сопровождают синаптическую депрессию.

Кальциевый ток возникает и медленно нарастает во время потенциала действия; его обычно перекрывает калиевый ток. Для того чтобы демаскировать первый из них, мы действовали на ганглий тетраэтиламмонием (ТЭА) веществом, которое в некоторой степени избирательно блокирует поздний калиевый ток. Блокируя реполяризующее действие калиевого тока, ТЭА незначительно удлиняет потенциал действия. Удлинение это в большой мере обусловлено беспрепятственным действием кальциевого тока. Вызываемое ТЭА удлинение потенциала действия служит хорошим критерием изменения кальциевого тока.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*