KnigaRead.com/

В Тюрин - Внимание глубина

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн В Тюрин, "Внимание глубина" бесплатно, без регистрации.
Перейти на страницу:

Для определения под водой изменения положения тела немалое значение имеет скорость изменения углового ускорения. Так, при быстром изменении углового ускорения ощущается наклон даже на 8 градусов, а при медленном изменении углового ускорения ощущается наклон только на 17 и более градусов,

Для ориентирования под водой имеет значение даже поза спортена-подводника. Поза “лежа на спине с запрокинутой головой назад” считается наиболее неблагоприятной для ориентирования (по всей вероятности, в этой позе человек менее всего подвержен укачиванию).

Большое значение для правильной ориентации под водой имеет состояние здоровья спортсмена.

По данным Н. А. Одесской и М. И. Фетисова, наиболее часто теряют под водой ориентировку и не могут в результате этого всплыть на поверхность ныряльщики, имеющие патологические изменения в среднем ухе, разрывы барабанной перепонки, кровоизлияния в ее слизистую оболочку, смещение слуховых косточек, гнойные отиты или перенесшие радикальную операцию по поводу мастоидита (осложнение гнойного воспаления среднего уха).

Дело тут в том, что сдвиг эндолимфы можно вызвать и при неподвижном состоянии головы. Для этого достаточно нагревать или охлаждать стенку полукружного канала, вливая в ухо холодную или горячую воду. При нагревании или охлаждении стенки лабиринта в эндолимфе создаются тепловые потоки, и человеку с закрытыми глазами кажется, что он начинает вращаться. Под водой при таких обстоятельствах пловец теряет ориентировку полностью. Патологические же изменения в среднем ухе увеличивают возможность температурного воздействия на эндолимфу. По наблюдениям оториноларинголога Мухи у ныряльщиков, имеющих дефект барабанной перепонки, сразу же после попадания в уши холодной воды наступало головокружение, и они с трудом спасались.

Нагревание или охлаждение полукружных каналов может происходить и со стороны сосцевидного отростка височной кости. Особенно легко это происходит у людей, перенесших операцию по поводу мастоидита, так как у них полукружные каналы в отличие от здоровых людей защищены от влияния внешних температур только лишь кожей, а не кожей и костью со множеством ячеек, содержащих воздух.

Не исключена возможность потери ориентировки и здоровыми людьми в результате попадания холодной воды в наружный слуховой проход.

Вероятность ошибочных действий повышается, если спортсмен-подводник впервые плавает в условиях плохой видимости и освещенности, а также находится в состоянии волнения. Поэтому так важна для спортсменов-подводников тренировка в ориентировании, которая в известной мере восполняет пробелы в информации о пространственном положении тела под водой. Это подтверждает тот факт, что у тренированного человека при плавании с завязанными глазами хорошо сохраняется ощущение направления оси тела по отношению к направлению силы земного притяжения. Опыты показали, что после 4-5 тренировок с завязанными глазами спортсмены начинают правильно ориентироваться в пространстве.

Глава 4. КАК ДОЛГО МОЖНО ПРОБЫТЬ ПОД ВОДОЙ

Свободное ныряние переживают сейчас свою вторую молодость. Почти полностью вытесненное из профессиональной сферы, оно завоевывает все большую популярность у спортсменов-подводников, у многочисленных любителей подводной стрельбы по рыбам. Появились даже ныряльщики-глубиноманы. В 1966-1973 годах выдающиеся ныряльщики мира Энцо Майорка, Жак Майоль и Роберт Крофт достигли без водолазного снаряжения предельных глубин - 60-76 метров. При этом они пользовались лишь маской, чтобы лучше видеть, чугунным грузом, который увлекал их на дно, и ластами, помогавшими быстро всплывать на поверхность. Ныряние занимало у них от двух до трех минут. Скорость погружения и всплытия при этом была примерно одинаковой и равнялась 1-1,2 метра в секунду.

Наверное; не требуется доказывать, что ныряние требует крепкого здоровья, физической тренированности, специальных навыков. Поговорим о физиологических возможностях ныряльщика.

При нырянии с задержкой дыхания производится большая физическая работа: напряжение кислорода в крови быстро падает, напряжение углекислого газа быстро растет. Охлаждающее действие воды еще больше усиливает интенсивность потребления кислорода, и в организме быстро развивается кислородная недостаточность. Кроме того, при нырянии резко увеличивается давление на организм. Таким образом, возможности ныряльщика зависят прежде всего от того, как долго он способен задерживать под водой дыхание без возникновения кислородного голодания головного мозга, от того, способен ли он безболезненно переносить повышение окружающего давления со скоростью 0,1-0,12 кгс/см2/ в секунду.

Длительность произвольной задержки дыхания у нетренированного человека невелика. У взрослых здоровых людей она в состоянии покоя после обычного вдоха составляет в среднем 54,5 секунды, а после обычного выдоха 40 секунд. Но тренировки и гипервентиляция значительно ее увеличивают.

Японские морские девы “ама” после гипервентиляции остаются под водой до 4 минут. Отдельные же ныряльщицы - ловцы губок - по данным японских исследователей Терука и Течнока находились под водой на глубине 20-30 метров до 8,5 минуты.

Еще больше увеличивает время задержки дыхания гипервентиляция кислородом. Исследования показали, что если гипервентиляция воздухом увеличивает время задержки дыхания в среднем в полтора раза, то гипервентиляция кислородом - в три раза. Шнейдером в 1930 году наблюдался случай, когда после предварительного усиленного дыхания кислородом задержка дыхания длилась 15 минут 13 секунд. По данным Одажлии (1965 год) здоровые молодые люди после дыхания кислородом могли задерживать его от 3,1 до 8,5 минуты. После 10-минутной гипервентиляции кислородом продолжительность задержки дыхания увеличивалась до 6-14 минут. Рэн считает, что после дыхания кислородом под абсолютным давлением равным 2 кгс/см2 человек может выдержать остановку дыхания в течение 30 минут при условии, если предшествовавшая гипервентиляция компенсирует накопление углекислого газа.

Но нырять, не зная своих возможностей, опасно. Можно ли заранее теоретическим путем определить, на сколько времени безопасно для вас задерживать дыхание? Можно. Но предварительно давайте в общих чертах познакомимся с таким жизненно важным для организма человека процессом, как дыхание.

Состав земной атмосферы постоянен и содержит кислорода 20,95, азота 78,08, углекислого газа 0,03 процента, гелия, аргона, неона, ксенона, криптона и водяных паров около 1 процента. Но атмосферный воздух не участвует непосредственно в газообмене организма. Венозная кровь вступает в газообмен с альвеолярным воздухом легких, состав которого существенно отличается от атмосферного. Атмосферный же воздух служит лишь для так называемого внешнего дыхания, т.е. для вентиляции альвеолярного воздуха.

Таблица 1. Состав альвеолярного воздуха.

Наименование газов Содержание в % Парциальное давление в мм рт.ст. Кислород 13,0-14,4 100-110 Углекислый газ 4,9-5,9 37-45 Азот 73,5-76,0 558-576 Водяные пары 6,2 47

Состав альвеолярного воздуха всегда постоянен и даже незначительное изменение в его компонентах приводит к резким сдвигам в организме, которые могут вызвать патологические состояния, например кислородное голодание при свободном нырянии. Нормальной же и естественной реакцией на изменение состава альвеолярного воздуха при нырянии с задержкой дыхания является возбуждение дыхательного центра. Возбуждение дыхательного центра происходит в первую очередь из-за определенного повышения в альвеолярном воздухе парциального давления углекислого газа. Возбуждающим образом действует и определенное понижение парциального давления кислорода. В связи с этим должно быть ясно, почему у различных людей, несмотря на значительную разницу в продолжительности задержки дыхания, газовый состав альвеолярного воздуха после задержки дыхания практически одинаков.

Таким образом, можно прийти к выводу, что длительность пребывания ныряльщика под водой зависит от максимальной емкости его легких, величины физической нагрузки и влияния внешней среды, но главное, от скорости изменения содержания в альвеолярном воздухе кислорода и углекислого газа. Обусловлена же эта скорость тренированностью организма на выносливость, т.е. его способностью экономно расходовать запасы кислорода.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*