Борис Барковсков - Модели железных дорог
Сердечник магнитопровода набирают из отдельных пластин трансформаторной стали. Пластины используют от старых трансформаторов радиоприёмников, телевизоров и др. В зависимости от формы магнитопровода сердечника трансформаторы бывают стержневого и броневого типов (рис. 84). Сборку магнитопровода осуществляют после намотки катушек.
Рис. 84. Конструкции магнитопроводов:
а — стержневой: б — броневой
Следующей величиной, необходимой для расчёта трансформатора, является количество витков на 1 В напряжения:
u1в = 45 / F' .
Для первичной обмотки количество витков
uI = u1вUп = 45Uп / F' .
При определении количества витков для вторичных обмоток их число увеличивают на 5 — 10%, чтобы компенсировать потери:
uII = (1,05 ÷ 1,1) u1вUв = (1,05 ÷ 1,1) 45Uв / F' .
Далее определяют сечение провода для каждой обмотки. При этом считают, что медный провод сечением 1 мм2 может проводить ток не более 2,5 А. Тогда
S = I / 2,5 ,
где S — сечение провода, мм2, I — требуемый ток, А.
При отсутствии провода расчётного сечения используют провод ближайшего большего сечения. После этого делают проверочный расчёт для определения: можно ли поместить все витки на катушку трансформатора. Расчёт производят применительно к имеющимся в наличии трансформаторным пластинам. При расчёте учитывают сечение проводов, толщину изоляции, количество витков. Площадь окна пластины сердечника, куда помещается катушка трансформатора, составляет
F''min = 3( d12u1 + d22u2 + ... + dn2un),
где d — диаметр проводов обмотки; u — количество витков обмоток.
Для упрощения расчётов можно воспользоваться основными параметрами трансформаторов небольшой мощности (от 10 до 150 Вт), приведёнными в табл. 1.
Таблица 1
Мощность Рs, Вт Размеры сердечника Количество витков на 1 В обмотки aXb, мм F', см2 первичной вторичной 10 12 X 15 2,5 20 23 20 17 X 20 3,5 14 16 35 20 X 27 5,5 7 8 45 23 X 32 7 5,5 6,3 60 30 X 32 10 4,5 5,2 100 35 X 35 12,5 3,5 4,2 150 35 X 50 17,5 3 3,4Диаметр обмоточного провода принимают в зависимости от силы тока:
Сила тока, А 0,1 0,2 0,25 0,35 0,4 0,5 1,0 1,75 2,5 3,0 4,0 6,0 Диаметр провода, мм 0,2 0,28 0,3 0,35 0,4 0,5 0,6 0,8 1,0 1,2 1,5 2,0Первичные и вторичные обмотки наматывают на каркас, который лучше использовать от того же трансформатора, что и пластины. Однако при необходимости можно изготовить новый каркас из гетинакса, текстолита или плотного картона. Конфигурация стенок каркаса изображена на рис. 85, а, б. Размеры каркаса определяют в зависимости от сечения сердечника и окон в пластинах. Собранный каркас должен плотно заходить на стойки пластин и быть достаточно прочным, чтобы выдержать усилие при намотке провода.
Сначала наматывают первичную обмотку. Витки укладывают ровными плотными рядами. Намотку катушек можно делать вручную или при помощи ручной дрели (рис. 85, в). Для этого по размеру окна каркаса вырезают деревянный брусок и по его продольной оси вбивают гвоздь, свободный конец которого зажимают в патрон дрели. Дрель закрепляют в тисках. Правой рукой вращают рукоятку дрели, а левой направляют на каркас провод, укладывая его виток к витку с некоторым натяжением. Каждый уложенный слой витков изолируют от последующего конденсаторной бумагой. Ширину конденсаторной бумаги берут на 3 — 5 мм больше ширины каркаса. Края конденсаторной бумаги надрезают (рис. 85, г), чтобы хорошо изолировать крайние витки. Между отдельными обмотками изоляцию усиливают наложением нескольких слоев или применением более толстой конденсаторной бумаги. При намотке вторичной обмотки, предназначенной для питания моделей локомотивов, не разрывая провод, делают выводы через определённое расчётом количество витков, соответствующее напряжению 2 В. Все выводы проводов обмоток изолируют трубками из поливинилхлоридного пластиката и пропускают через отверстия в боковых стенках каркаса.
При сборке пакета нужно следить за сохранением изоляции, нанесенной на поверхности пластин. Для уменьшения шума при работе трансформатора собранный сердечник стягивают шпильками.
Перед включением в сеть собранного трансформатора необходимо проверить на пробой мегаомметром с напряжением 2500 В все его обмотки между собой и магнитопроводом. Для этого один из проводов, идущих от мегаомметра, закрепляют на пластинах сердечника, а другой — на выводе одной из обмоток. При вращении рукоятки мегаомметра на сердечник и обмотку подаётся напряжение. По показаниям мегаомметра определяют сопротивление изоляции, которое не должно быть менее 2 МОм. Закрепляя провода мегаомметра на выводах соседних обмоток, проверяют сопротивление изоляции между ними. Проверку сопротивления изоляции обмоток и сердечника может выполнить любая мастерская по ремонту радиоаппаратуры и бытовых электроприборов.
Рис. 85. Изготовление трансформаторных катушек;
а — детали каркаса; б — каркас в сборе; в — намотка катушки; г — выкройка межслойной изоляции
После проверки в цепь питания устанавливают предохранители, рассчитанные на ток 0,5 — 1 А. Трансформатор включают в сеть сначала без нагрузки и оставляют подключенным на 15 — 20 мин. При сильном нагреве катушки необходимо разобрать весь трансформатор, снять обмотки и снова перемотать, так как нагрев катушки свидетельствует о межвитковом замыкании в первичной обмотке. При перемотке трансформатора следует использовать новый провод. Межвитковые замыкания могут быть и на вторичных обмотках, что обнаруживается при продолжительном включении вторичной обмотки на расчётную, потребляемую нагрузку.
На рис. 86 изображена принципиальная электрическая схема самодельного блока управления со ступенчатым регулированием выходного напряжения.
Рис. 86. Принципиальная электрическая схема самодельного блока управления:
X — штепсельный разъём; TV — трансформатор; SA — переключатель; RP — потенциометр; UZ — выпрямитель; E2 — лампа красного цвета; R — резистор короткого замыкания; E1 — лампа зелёного цвета; S — переключатель полярности; S1, S2 — выключатели; M1, M2 — нагрузка (электродвигатели)
Для изменения напряжения в блоке управления можно использовать шестипозиционный переключатель галетного типа, к которому подключают промежуточные выводы вторичной обмотки, предназначенные для питания моделей локомотивов, соответствующие напряжению 2 В.
Для преобразования переменного тока в постоянный служат полупроводниковые выпрямители: селеновые, кремниевые или германиевые, собранные по определённой схеме. Селеновые выпрямители представляют собой столбики круглых, квадратных или прямоугольных элементов, подбор которых осуществляют из расчёта, что на каждый элемент приходится напряжение 20 В при токе 40 мА на 1 см2. Недостатками селеновых выпрямителей являются их большой объём и потеря свойств со временем.
Более совершенными выпрямительными элементами являются кремниевые или германиевые диоды. Для выпрямления переменного тока в блоках управления можно рекомендовать следующие диоды:
Марка диода Д7А Д7Ж Д202 Д205 Д214 Д214А Д221 Д226 Д231 Предельный ток, мА 300 300 400 400 5000 10000 400 300 10000 Повторяющееся напряжение, В 50 400 100 400 100 100 400 400 300В блоке управления применена двухполупериодная мостовая схема выпрямителя со встроенным в одно из плеч потенциометром RP. Преимуществом такой схемы является возможность плавного перевода однополупериодного выпрямления тока в двухполупериодное, что обеспечивает плавное трогание, разгон, замедление и остановку, а также медленное движение модели локомотива при максимальной силе тяги. Трогание модели локомотива осуществляют увеличением напряжения ступенчатым регулятором от 0 до 12 В при включенном потенциометре (Rmax), затем потенциометр плавно выключают (R → 0), обеспечивая разгон модели до максимальной скорости. Остановку локомотива осуществляют в обратной последовательности. График выходного напряжения при максимальном сопротивлении потенциометра, изменения его величины от максимального до минимального значения, а также при R=0 изображён на рис. 87. В блоке управления можно использовать потенциометр сопротивлением до 50 Ом, мощностью 1 — 2 Вт, применяемый в радиотехнике.