Андрей Кашкаров - Современный квартирный сантехник, строитель и электрик
Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений об электротехнике?
Электрическая схема опыта Авраменко состояла из резонансного трансформатора Теслы (назван по имени изобретателя Николы Теслы, первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки), единственного проводника линии электропередачи, двух встречно включенных полупроводниковых диодов, конденсатора и разрядника.
При подключении входных выводов резонансного трансформатора к источнику переменного напряжения в разряднике возникает искра – происходит пробой воздуха электрическими разрядами. Они могут быть как непрерывными, так и прерывающимися (напоминающими разряд электрошокера), повторяются с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения. На контактах разрядника периодически накапливается определенное число зарядов. Поступать туда они могут лишь через диоды, выпрямляющие переменный ток, существующий в линии. Таким образом, в опыте Авраменко циркулирует постоянный по роду и пульсирующий по величине и характеру ток.
Подключенный к разряднику вольтметр, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, перед пробоем (разрядника) показал напряжение более 10 кВ. Установленный вместо него амперметр регистрировал ток в несколько десятков микроампер (мкА).
Усложнив схему, экспериментаторы Московского электротехнического института 5 июля 1990 года передавали по линии ток, эквивалентный мощности 1,3 кВт. Источником питания служил машинный генератор с частотой 8 кГц. Длина вольфрамового провода линии передачи (диаметром 15 мкм) равнялась 2,75 м. Электрическое сопротивление такого провода намного превышало сопротивление обычных электрических проводов (из алюминия или меди) той же длины. Ученые до сих пор спорят: должны были происходить большие потери электроэнергии, а провод – раскалиться и излучать тепло. Но этого не произошло, пока трудно объяснить почему, – вольфрам оставался холодным. Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были ошеломлены (однако своих фамилий, на всякий случай, просили не указывать).
Это не просто экспериментаторские игрушки. Линия с одним проводом, по сути, не имела сопротивления электрическому току (имела сопротивление, близкое к нулю), и представляла собой «сверхпроводник» в условиях «комнатной» температуры. Практическое значение этих экспериментов (опробована передача электроэнергии по одному проводу на 160 м) трудно переоценить. Эффект связан с токами смещения и резонансными явлениями – совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника; вспомним, что о мгновенных токах в единичной линии писал еще Фарадей. В соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике «джоулева» тепла, т. е. проводник не оказывает ему сопротивления. К слову, Авраменко до сих пор не получил авторского свидетельства за столь оригинальное открытие.
3.4. Вопросы заземления бытовой техники
Надежное электропитание и заземление очень важны для работы бытовой техники, персональных компьютеров, локальных сетей, периферийных устройств, соединяемых различными кабелями (например, компьютер – принтер, телевизор – видеомагнитофон и в других случаях). Применение устройств защиты, в частности источников бесперебойного питания (UPS), эффективно только при наличии хорошего заземления.
Практическая реализация надежного заземления настолько актуальна (с точки зрения защиты, долговременной эксплуатации и техники безопасности), что имеет не меньшее значение, чем, скажем, жизнь и здоровье человека; эти понятия взаимосвязаны. Как надежно заземлить оборудование – поговорим далее.
3.4.1. Подключение заземления в одном электрическом контуре
Рассмотрим некоторые особенности подключения электрических устройств к осветительной сети 220 В с точки зрения безопасности, как человека, так и компьютера.
На рис. 3.39 представлена схема сетевого фильтра по питанию (ФП), применяемого практически в каждом источнике питания бытовых устройств различной сложности (телевизора, компьютера или периферийного устройства).
Рис. 3.39. Входные цепи (ФП) источника питания бытовой техники
Рис. 3.40. Образование потенциала на общем проводе электроприбора
Конденсаторы электрического фильтра предназначены для шунтирования высокочастотных помех осветительной сети на «землю» через провод защитного заземления и трехполюсные вилку (штекер) и розетку. Провод заземления соединяют с контуром заземления, его недопустимо соединять с «нулем» осветительной сети. При устройстве «зануления» необходима гарантия того, что нуль не станет фазой, если кто-нибудь «перевернет» штекер питания. Если же «землю» устройства никуда не подключать, на корпусе (общем проводе) устройства может появиться переменное напряжение 100 В (рис. 3.40): конденсаторы фильтра работают как емкостной делитель напряжения, и поскольку их емкость одинакова, напряжение 220 В делится пополам.
Мощность данного источника ограничена, поскольку ток короткого замыкания Iкз на землю составляет от единиц до десятков миллиампер; причем, чем мощнее источник питания, тем больше емкость конденсаторов фильтра и, следовательно, ток.
При емкости конденсатора 0,01 мкФ ток будет около 0,7 мА. Данные значения переменного тока и напряжения опасны для человека, особенно для ребенка или домашнего животного (их масса и устойчивость к опасным факторам намного ниже, чем при прочих равных условиях у взрослого человека). Попасть под удар электрического тока в данном случае можно, например, прикоснувшись одновременно к металлическим частям корпуса компьютера и к батарее отопления. Это напряжение является одним из источников разности потенциалов между устройствами, от которой страдают интерфейсные схемы.
Что же происходит при соединении с помощью кабеля двух различных устройств, например, телевизора – DVD-проигрывателя, музыкального центра – усилителя низкой частоты (НЧ), компьютера – принтера?
Общий провод кабеля имеет электрический контакт с общим проводом электрических схем и печатных плат, а также и корпусом устройства (если он из токопроводящего материала). Когда соединяемые устройства надежно заземлены (занулены) через отдельный провод на общий контур, проблемы разности потенциалов не возникает. На рис. 3.41 показано правильное подключение электрических устройств.
Рис. 3.41. Правильное подключение электрических устройств
Если же в качестве заземляющего провода использовать нулевой провод питания при разводке питающей сети с трехполюсными розетками двухпроводным кабелем, на нем будет присутствовать разность потенциалов, вызванная падением напряжения от протекающего силового тока Inul. Эту опасную ситуацию иллюстрирует рис. 3.42.
Рис. 3.42. Появление разности потенциалов при двухпроводном кабеле питания
Если в эти же розетки включать устройства с большим энергопотреблением (например, мощный лазерный принтер или факс старого образца), разность потенциалов будет ощутимой. Также будут заметными импульсные помехи, создаваемые при включении/выключении этих устройств. Эквивалентный источник напряжения при невысоком значении электродвижущей силы (ЭДС) Enul < 10 В будет иметь низкое выходное сопротивление, равное сопротивлению участка нулевого провода. Мощность, потребляемая устройствами, показанными на рис. 3.42, равна:
Р1 = Р2 + Р3.
Поскольку обычно сопротивление соединительного кабеля больше питающего (поскольку сечение проводов питающего кабеля больше сечения проводов кабеля соединения), через общий провод соединительного кабеля потечет ток существенно меньший, чем силовой.
Это прямое следствие закона Ома:
U = I × R, т. е. I = U/R.
Но при нарушении контакта в нулевом проводе питания через соединительный кабель может протекать и весь ток, потребляемый устройством.
Значение этого опасного тока может достигать нескольких ампер, что повлечет выход устройства из строя. Разные потенциалы относительно общего провода (корпуса) разных устройств также являются источником помех. Такая ситуация представлена на рис. 3.43.
Рис. 3.43. Появление фазного напряжения на общем проводе (корпусе устройства) при обрыве нулевого провода
Самая опасная ситуация возникает при обрыве нулевого провода (например, отгорел нулевой провод в щите или распределительной коробке) в случае заземления устройств через рабочий нулевой провод (рис. 3.44).