Мартин Гарднер - Математические головоломки и развлечения
Графически весь полет можно изобразить с помощью диаграммы, показанной на рис. 112, где по горизонтальной оси отложено расстояние, а по вертикальной — время. Правый и левый края диаграммы следует считать склеенными.
Рис. 112 К задаче о кругосветном полете самолета.
3. Взяв раствор циркуля равным квадратному корню из 20 см и поставив его острие в центр черной клетки на шахматной доске с четырехсантиметровыми клетками, вы сможете описать наибольшую из окружностей, проходящих только по черным клеткам.
4. Любое поперечное сечение пробки плоскостью, перпендикулярной верхнему ребру и основанию, имеет вид треугольника. Если бы пробка была цилиндрической, соответствующие сечения были бы прямоугольниками, при этом площадь каждого прямоугольного сечения была бы вдвое больше площади треугольного сечения. Поскольку цилиндр можно считать составленным из прямоугольных поперечных сечений, объем универсальной пробки должен составлять половину объема цилиндра: объем цилиндра равен 2π, следовательно, объем универсальной пробки равен π.
В действительности же существует бесконечно много пробок различной формы, которыми можно заткнуть все три отверстия.
Пробка той формы, которая описана в условии задачи, имеет наименьший объем по сравнению с любым выпуклым телом, способным заткнуть те же три дырки. Пробку наибольшего объема нетрудно получить, если обрезать цилиндрическую пробку так, как показано на рис. 113.
Рис. 113 Как сделать универсальную пробку наибольшего объема.
Именно эту форму пробки обычно имеют в виду составители сборников головоломок, предлагая читателям найти универсальную затычку, подходящую к круглому, треугольному и квадратному отверстиям. Ее объем равен 2π — 4/3.
5. Написать подряд два раза трехзначное число — все равно что умножить это число на 1001. Число 1001 разлагается на простые множители 7, 11 и 13, поэтому, приписав к трехзначному числу его же еще раз справа, задумавший просто умножает свое число на 7 х 11 х 13. Разделив шестизначное число на 7, 11 и на 13, он, естественно, получает снова исходное трехзначное число. Эта задача заимствована из книги Я. И. Перельмана.[40]
6. Две ракеты сближаются со скоростью 30 000 миль/час, или 500 миль/мин. Отсчитывая время назад, от момента столкновения, мы получаем, что за минуту до столкновения ракеты должны были бы находиться на расстоянии 500 миль друг от друга.
7. Рассмотрим исходное расположение монет в виде треугольника. Обозначим цифрой 1 верхнюю монету, цифрами 2 и 3 — монеты в следующем ряду и цифрами 4, 5, 6 — монеты в нижнем ряду. Следующие четыре хода позволяют получить представление о множестве других решении: передвинем монету 1 так, чтобы она коснулась монет 2 и 4; монету 4 передвинем так, чтобы она коснулась монет 5 и 6; монету 5 передвинем так, чтобы она коснулась монет 1 и 2 снизу; и, наконец, монету 1 передвинем так, чтобы она коснулась монет 4 и 5.
8. Поскольку в каждом рукопожатии участвуют двое людей, полное число рукопожатий, которыми обменялись все участники конгресса, делится на 2 и поэтому четно. Число рукопожатий, приходящихся на долю тех, кто обменялись со своими коллегами четным числом рукопожатий, очевидно, четно. Только сумма четного числа нечетных слагаемых может быть четным числом, поэтому число тех участников конгресса, которые обменялись с другими участниками нечетным числом рукопожатий, четно.
То же утверждение можно доказать и иным путем. Перед началом работы конгресса число его участников, обменявшихся нечетным числом рукопожатий, равно 0. После первого рукопожатия появляются два «нечетных участника». Все рукопожатия, начиная со второго, делятся на три типа: рукопожатия между двумя «четными» участниками, рукопожатия между двумя «нечетными» участниками и «смешанные» рукопожатия между «четными» и «нечетными» участниками. Каждое «четно-четное» рукопожатие увеличивает число «нечетных» участников на 2. Каждое нечетное» рукопожатие уменьшает число «нечетных» участников также на 2. Каждое «нечетно-четное» рукопожатие превращает «нечетного» участника в «четного» и, наоборот, «четного» участника в «нечетного» и, таким образом, оставляет число «нечетных» участников без изменения. Поэтому четное число биофизиков, обменявшихся нечетным числом рукопожатий, не может изменить своей четности и должно всегда оставаться четным.
Оба доказательства применимы к графу, на котором линии связывают точки попарно. Линии графа образуют сеть. Число точек сети, из которых выходит нечетное число линий, четно. Эта теорема встретится нам еще раз в главе 22 при рассмотрении головоломок, связанных с блужданием по сети линий.
9. Наибольшую вероятность выжить в «треугольной» дуэли имеет худший из стрелков, Джонс. Следом за ним идет Смит, который никогда не промахивается. Поскольку противники Джонса, когда настает их очередь стрелять, целятся друг в друга, оптимальная стратегия для Джонса заключается в том, чтобы стрелять в воздух до тех пор, пока один из его противников не будет убит. После этого он стреляет в оставшегося противника, имея перед ним большое преимущество.
Легче всего подсчитать вероятность остаться в живых для Смита. В дуэли с Брауном с вероятностью 1/2 он стреляет первым. В этом случае он убивает Брауна. Браун, который попадает в цель в 4-х случаях из 5, стреляет первым также с вероятностью 1/2. В этом случае Смит остается в живых с вероятностью 1/5. Таким образом, Смит с вероятностью 1/2 + 1/2х1/5 = 3/5 переживает Брауна. Если Смит остается в живых, то в него стреляет Джонс, который в 1/2 всех случаев промахивается. Но если Джонс промахивается при своем первом выстреле, то Смит, дождавшись своей очереди стрелять, убивает его. Поэтому с вероятностью 1/2 Смит выходит из дуэли с Джонсом живым и невредимым. Итак, вероятность остаться в живых после дуэли с обоими своими противниками для Смита равна 3/5х1/2 = 3/10.
Случай с Брауном более сложен, потому что требует рассмотрения бесконечного множества случаев. Вероятность остаться в живых после дуэли со Смитом для Брауна равна 2/5 (мы только что показали, что Смит в дуэли с Брауном имеет вероятность уцелеть, равную 3/5; так как в живых должен остаться лишь один из дуэлянтов, искомую вероятность для Смита мы находим, вычитая 3/5 из 1).
Затем в Брауна стреляет Джонс, который попадает в цель лишь в половине случаев. Если Джонс промахивается, то Браун с вероятностью 4/5 убивает его. Итак, на этом этапе дуэли Браун с вероятностью 1/2х4/5 = 4/10 выходит победителем из поединка с Джонсом. Но с вероятностью 1/5 Браун может промахнуться, после чего Джонс имеет право выстрелить еще раз. С вероятностью 1/2 Браун останется в живых, и тогда он в свою очередь сможет выстрелить в Джонса и с вероятностью 4/5 убить его. Шансы Брауна остаться в живых во время второго тура поединка составляют 1/2х1/5х1/2х4/5=4/100.
Если Браун снова промахнется, то во время третьего тура он может убить Джонса лишь с вероятностью 4/1000. В случае повторного промаха во время четвертого тура он попадет в Джонса с вероятностью 4/10000 и т. д. Таким образом, шансы Брауна пережить Джонса равны сумме бесконечного ряда 4/10+4/100+4/1000+4/10000+…
Это не что иное, как бесконечная периодическая десятичная дробь 0,44444…, равная 4/5.
Ранее мы видели, что Браун с вероятностью 2/5 может пережить Смита. Только что мы показали, что с вероятностью 4/9 он останется в живых после дуэли с Джонсом. Вероятность того, что именно Браун переживет обоих своих противников, равна, следовательно,
2/5х4/9=8/45
Аналогичным способом можно было бы подсчитать и вероятность уцелеть для Джонса, но проще получить ее вычитанием из 1 соответствующих вероятностей 3/10 для Смита и 8/45 для Брауна.
Она оказывается равной 47/90.
Весь поединок удобно изобразить с помощью специального графа—дерева дуэли (рис. 114).
Рис. 114 Дерево дуэли Смита, Джонса и Брауна.
Вначале ствол дерева раздваивается.
Это происходит потому, что если первым стреляет Джонс, то он производит свой выстрел в воздух, после чего остаются две равновероятные возможности: стреляет либо Смит, либо Джонс (эти двое стреляют «вполне серьезно», с твердым намерением убить своего противника). Одна из ветвей дерева простирается до бесконечности. Подсчет вероятности для того или иного дуэлянта остаться в живых производится следующим образом:
1. Нужно отметить все ветви дерева, в которых интересующий нас участник поединка является единственным из всех троих, оставшимся в живых.
2. Идя от каждой из отмеченных ветвей назад, к корню дерева, следует перемножить вероятности всех пройденных отрезков пути.