KnigaRead.com/
KnigaRead.com » Домоводство, Дом и семья » Развлечения » Мартин Гарднер - Математические головоломки и развлечения

Мартин Гарднер - Математические головоломки и развлечения

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Мартин Гарднер, "Математические головоломки и развлечения" бесплатно, без регистрации.
Перейти на страницу:

Шахматную доску можно вращать как целое и отражать в зеркале, поэтому легко видеть, что квадратное тетрамино может находиться в любом месте доски.

Никто не знает, сколько всего существует решений этой задачи, но похоже, что их больше 10 000. В 1958 году Дана С. Скотт (аспирантка-математик из Принстона) с помощью компьютера нашла все возможные решения с квадратом в центре доски. За три с половиной часа компьютер вьщал полный список из 65 различных решений (решения, получаемые одно из другого при поворотах и отражениях доски, не считаются различными и входят в этот список как одно решение).

При составлении программы было удобно разбить все решения на три класса в зависимости от расположения креста относительно центрального квадрата. На рис. 69 показаны решения всех трех классов. Компьютер нашел 20 решений первого, 19 второго и 26 третьего классов.

Исследуя все 65 решений, мы обнаруживаем несколько интересных фактов. Не существует решения, в котором прямое тетрамино не прилегало бы по всей своей длине к стороне доски. Для решений, в которых квадрат расположен не в центре, это утверждение неверно. В семи решениях (принадлежащих к первому и третьему классам) нет «перекрестков», то есть точек, где бы соприкасались углы четырех фигур. Отдельные знатоки считают, что «перекрестки» портят красоту рисунка. У третьего решения (рис. 69) есть интересное свойство: фигуру можно перегнуть пополам вдоль прямой линии. Существует 12 таких решений, все они относятся к третьему классу, и у каждого есть «перекрестки».



Рис. 69


Если не использовать квадратичное тетрамино и оставить незакрытыми четыре клетки в различных местах шахматной доски, то остальную часть ее можно будет собрать многими способами.

Такая «неполная» доска выглядит довольно изящно (три варианта сборки показаны на рис. 70).



Рис. 70


Из двенадцати пентамино можно сложить прямоугольники 6 х 10; 5 х 12; 4 х 15 и 3 х 20 (рис. 71).



Рис. 71 Прямоугольники, составленные из пентамино.


Прямоугольник 3 х 20, со всех точек зрения более сложный, мы предлагаем интересующемуся читателю собрать самостоятельно. Существует только два различных решения этой задачи, если не считать вращений и отражений. Обратите внимание, что на рис. 71 прямоугольник 5 х 12 собран из двух прямоугольников 5 х 7 и 5 х 5. Два прямоугольника 5x6, изображенные на рис. 72, можно сложить так, что получится прямоугольник либо 5 х 12, либо 6 х 10.



Рис. 72


Профессор Р. Робинсон и Дж. Таккер независимо друг от друга придумали задачу, которая получила название задачи об утроении.

Выбрав одно из пентамино, нужно с помощью девяти остальных фигур построить большую фигуру, подобную выбранной. Фигура должна быть в три раза выше и шире, чем первоначальная.

Задача об утроении допускает много изящных решений, три из них показаны на рис. 73.



Рис. 73 Схемы утроения.


Задача об утроении решается для любого из двенадцати пентамино.

Не менее интересны и другие задачи на составление различных фигур из «костей» пентамино, например «задача о двойном удвоении». Сначала вы складываете два пентамино. Потом строите эту фигуру из двух других пентамино, а из восьми оставшихся пентамино складываете подобную фигуру, но вдвое больших размеров.

Типичное решение такой задачи показано на рис. 74.



Рис. 74 Схема «двойного удвоения».


Другая задача состоит в том, чтобы из всех 12 фигур пентамино сложить прямоугольник 5 х 13, имеющий в центре отверстие в форме одной из этих фигур. Задача решается всегда независимо от того, с какой из 12 фигур пентамино совпадает форма отверстия. Одно из решений приведено на рис. 75.



Рис. 75


На рис. 76 показана еще одна интересная задача. Из двенадцати пентамино требуется сложить развертку куба с ребром, равным


Куб получается, если рисунок согнуть по пунктирным линиям.



Рис. 76 Развертка куба, сложенная из пентамино.


Какое минимальное число пентамино надо положить на шахматную доску, чтобы ни для одного из оставшихся пентамино места больше не было? Этот любопытный вопрос придумал Голомб; сам он считает, что это число равно пяти.

На рис. 77 изображена одна из таких конфигураций.



Рис. 77 Игра на шахматной доске фигурами пентамино.


Эта задача натолкнула Голомба на мысль играть на шахматной доске картонными пентамино, вырезанными точно по размерам квадратов доски. (Мы рекомендуем читателю изготовить такой набор пентамино, ибо он годен не только для игры, но и для того, чтобы решать и придумывать задачи.)

Двое или более игроков по очереди выбирают любое но и закрывают им любые клетки доски. У фигур нет «верхней» и «нижней» стороны. Как и во всех других задачах этой главы, пентамино могут быть асимметричными. Проигрывает тот, кто не сможет поставить свое пентамино.

Голомб пишет:

«Игра продолжается не менее пяти и не более двенадцати ходов, никогда не заканчивается вничью, в начале партии отличается большим разнообразием, чем шахматы, и наверняка увлечет людей самого различного возраста. Давать советы относительно стратегии игры трудно, но два важных принципа все же можно указать:

1. Старайтесь играть так, чтобы всегда оставалось место для четного числа «костей» (если вы играете вдвоем).

2. Если вы затрудняетесь проанализировать создавшуюся позицию, постарайтесь по возможности усложнить ее, чтобы противник оказался в еще более затруднительном положении, чем вы».

Поскольку 35 костей гексамино покрывают площадь в 210 квадратиков, невольно возникает мысль: а нельзя ли сложить из них прямоугольники размером 3 х 70, 5 х 42, 6 х 35, 7 х 30, 10 х 21 или 14 х 15? Я всерьез подумывал о том, чтобы назначить премию в 1000 долларов тому из читателей, кто сумеет построить один из этих шести прямоугольников, но мысль о тех долгих часах, которые ему придется затратить понапрасну, чтобы отыскать решение, вынудила меня отказаться от моего намерения. Дело в том, что все подобные попытки, как доказал Голомб, заранее обречены на провал. Его доказательство может служить прекрасным примером использования методов комбинаторной геометрии — мало известной отрасли математики, выводы которой широко используются в технике при отыскании оптимальных способов подгонки стандартных деталей. Для нас особый интерес представляют два примера:

а) раскраска частей интересующей нас фигуры в различные цвета для большей наглядности;

б) принцип «проверки на четность», основанный на использовании комбинаторных свойств четных и нечетных чисел.

Прежде всего раскрасим наши прямоугольники подобно шахматной доске в черные и белые квадраты. И тех и других должно быть нечетное число: 105 черных квадратов и 105 белых.

Перебрав 35 фигур гексамино, мы обнаружим, что 24 из них всегда покрывают три черных и три белых квадрата, то есть нечетное число квадратов каждого цвета. Число таких «нечетных гексамино» четно, а поскольку произведение четного числа на нечетное четно, мы можем утверждать, что все вместе 24 «четных» гексамино покроют четное число квадратов каждого цвета.

Остающиеся 11 гексамино имеют такую форму, что каждым из них можно накрыть четыре квадрата одного цвета и два другого, то есть четное число квадратов того и другого цвета. Число таких «четных гексамино» нечетно, но опять же. поскольку произведение четного числа на нечетное есть число четное, мы можем с уверенностью утверждать, что эти 11 фигур накрывают четное число квадратов каждого цвета. (На рис. 78 и 79 разбиты на группы 35 гексамино четных и нечетных фигур.)



Рис. 78 Двадцать четыре «нечетных» гексамино.



Рис. 79 Одиннадцать «четных» гексамино.


Наконец, поскольку сумма четных чисел четна, мы заключаем, что с помощью 35 гексамино можно накрыть четное число белых квадратов и четное число черных. К сожалению, каждый прямоугольник состоит из 105 квадратов каждого цвета. Это число нечетно, поэтому прямоугольника, который можно было покрыть 35 фигурами гексамино, не существует.

«Рассмотренные задачи, — резюмирует Голомб, — заставляют сделать вывод, который относится ко всем правдоподобным рассуждениям вообще. Взяв те или иные начальные данные, мы долго и упорно пытаемся подогнать их под некоторую схему. Если это нам удается, мы считаем, что только такая схема и «соответствует фактам». В действительности же те данные, которыми мы располагаем, отражают лишь отдельные стороны прекрасного и всеобъемлющего целого. Такого рода рассуждения неоднократно встречаются в религии, политике и даже в науке. Пентамино служит примером того, как одни и те же данные с одинаковым успехом удовлетворяют многим различным схемам. Схема, на которой мы в конце концов останавливаем свой выбор, определяется не столько имеющимися в нашем распоряжении данными, сколько тем, к чему мы стремимся.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*