Виктор Шаталов - Эксперимент продолжается
На уроках при ответах на вопросы с мест, когда в классе одновременно поднято несколько рук, при прочих равных условиях предпочтение всегда отдается девочкам. Мальчики к этому привыкли как к совершенно естественному, и никогда по этому поводу не было никаких обид.
Нужно налить в графин воды из крана? Это сделает мальчик. Нужно отнести в учительскую классный журнал? Тоже идет мальчик. Нужно протереть в классе влажной тряпкой полы? Мальчик. Абсолютное большинство подобных поручений выполняют мальчики. Нужно ли еще объяснять, почему девочки не могут не уважать своих одноклассников и отдают им предпочтение перед другими мальчиками?
Тайная мысль
Как известно, в экспериментальных классах самостоятельные работы младших школьников проверяют старшеклассники: кураторами пятиклассников являются шестиклассники, шестиклассников - семиклассники и т. д. Но в этой системе связей возникает свободное звено - десятиклассники. Причина проста: ежедневная обязательная проверка всех (абсолютно всех) самостоятельных работ приводит к тому, что уже в IX классе можно полностью снять внешний контроль.
Старшим школьникам вполне достаточно одной только консультативной помощи учителя непосредственно на уроках, отчасти - во внеурочное время, но более всего - на уроках открытых мыслей. Ученики в достаточной степени овладевают навыками самоконтроля, самоанализа и саморегуляции своей учебной деятельности.
Итак, работы учеников девятых классов проверять уже не нужно. Значит, появляется возможность направить десятиклассников консультантами в четвертые, пятые и шестые классы. В течение целого учебного года юноши десятиклассники проверяют работы шестиклассниц, консультируют их... И кто знает, может быть, через 5-10 лет возникнут многие семьи с прекрасной разницей в возрасте. Семьи, в которых муж и жена могут сказать: "Мы вместе учились в одной школе". Не станут ли общие воспоминания и переживания отрочества и юности, опыт сотрудничества и дружеского общения гарантией прочного супружества? И не меньше ли станет по стране так тяжело ударяющих по детям разводов? Слов нет, это всего только предположения. Но почему бы не проверить их лет через 15-20?
И снова вперед!
Уроки следуют один за другим. Задач решается все больше, все более разнообразных и все более сложных. Не разобраться в них просто невозможно, и они становятся такими же интересными и увлекательными, как иллюстрированные детские книжки, как самые занимательные головоломки. Да что интересными!? Они становятся понятными! От урока к уроку все гуще частокол рук, все чаще выходят к доске бывшие слабые ученики. И решают! Решают грамотно, увлеченно. Безбоязненно. Нерешительность и страх исчезают, крепнут добрые человеческие качества - активность и познавательная смелость.
Стоп! Активность и познавательная смелость не могут развиваться без поля деятельности, коим в математике был и остается сборник задач, хотя сегодня он для многих - всего лишь балласт в школьном ранце. Даже летом, когда десятки миллионов школьников предаются одному только отдыху, ребята из экспериментальных классов систематизируют работу в учебном году - создают аккуратно оформленные решебники разных сборников задач. Так, например, 26 учеников, закончивших VI класс весной 1988 г., принесли осенью более 2000 задач, записанных в общие тетради из конкурсных сборников. Это им было просто рекомендовано, без каких-либо оргвыводов для тех, кто делать этого не станет. Теперь уже ученики сами тянутся к сборникам задач. А почему бы и не потянуться? Большинство задач из тех, которые решаются на уроке, учитель берет из книг, которые имеются у всех ребят: задачники закупаются одновременно для всех.
Теперь даже пятикласснику становится любопытно: что за чудеса спрятаны в этих мудреных и вчера еще просто недоступных книгах? С техникой чтения плоховато? Не беда - это ведь в классе только приходится читать, когда каждое твое слово слышат все. А дома? Дома можно и по-спотыкаться. Зато какая радость обуревает вчерашнего тугодума, когда задача оказывается побежденной! Умение решать побуждает к чтению. И это уже прорыв магического кольца! Теперь уже развитие ребенка идет одновременно по двум направлениям. Совершенствование техники чтения поднимает на новый качественный уровень процесс продуктивного мышления. Развитое мышление настоятельно требует совершенствования навыков чтения. Проходит совсем немного времени, и выходящие из экспериментального класса после уроков учителя снисходительно перешептываются: "Конечно, с такими детьми и мы могли бы работать". Но ведь это уже было. Где?.. Ах, да - "Демосфены!".
Нелишне отметить еще одно неизбежное следствие.
Как уже было сказано ранее, ребята очень редко записывают в тетради краткие условия задач. На доске их что ни день, то десяток, а в тетрадях не каждый день одна. Не приводит ли это к иждивенчеству и нарушению требования "о привитии некоторых навыков краткой записи условий задач"? В том-то и дело, что нет. Формы кратких записей разнообразных по своей структуре условий задач позволяют учителю импровизировать, рождают у ребят устойчивое ощущение свободной мысли, а графическая подача логических связок помогает представить задачу зримо, наглядно, вызывая тем самым желание создавать подобные схемы самостоятельно, без оглядки на каноны. Задачи становятся чем-то сродни шутливым рисункам, которые так любят делать дети, а рисунки у каждого свои. Разные. Отчего бы не пофантазировать, придумывая графический образ задачи? Это должно не только разрешаться, но и всячески поощряться. И неважно, какой образ выбирает ученик, отыскивая способ решения. Решение вот оно. Ответ верный. Проверка следует незамедлительно. А краткая запись, какой бы простой, замысловатой или оригинальной она ни была, в конце остается за кадром. И все же по прошествии некоторого времени, вызывая ребят к доске и диктуя им условие задачи для краткой записи (это тоже случается), учитель вдруг обнаруживает в ней все те элементы, которые на протяжении недель и месяцев ненавязчиво, в совершенно необязательной форме предлагал детям.
Так рождается и осмысляется еще один специальный прием, который, пополнив арсенал новой методики, обогащает ее воспитательные и обучающие возможности. А завтра будут новые классы, новые ученики и возникнут новые проблемы, которые потребуют поиска способов их решения. Эксперимент не закончен. Эксперимент продолжается. А значит, до новой встречи, читатель.
1 Лук А. Н. Юмор, остроумие, творчество. - М., 1977. С. 129.
2 Сандлер А. Узелки на память: Записки реабилитированного. Магаданское книжное издательство, 1988. С. 6.
3 Амонашвили Ш, Учитель у доски // Учительская газета. 1988,12 июля.
4 Наука и человечество: Международный ежегодник,- М., 1966. С. 256.
5 Дуденко Р. И. Учебное пособие по оборудованию и охране труда в. общественном питании.- М., Экономика, 1987
6 Наглядные средства в преподавании философии, - М., 1976, С. 14.
7 Продуктивность такого подхода к обучению доказана и П. М. Эрдниевым. См., например: Эрдниев П. М. Обучение математике в начальных классах: Опыт обучения методом укрупненных дидактических единиц.- М., 1979.
8 Власова Т. А., Певзнер М. С, О детях с отклонениями в развитии.- М., 1973. С. 57
9 Выготский Л. С. Избранные психологические исследования,-М., 1955. С. 448
10 Эти игры описаны в книге Н. В. Студеницкого "Веселый отдых" (М., 1956).
11 О том, что случилось дальше, см.: Блон Ж. Великий час океанов. М., 1978. С. 52.
12 Леонов А.А., Соколов А.К., Космические дали: Альбом.- М., 1972
13 Здесь и далее в скобках указан номер зачетной книжки студента и средний балл по школьным предметам естественно-математического цикла до начала эксперимента (сводные данные классного журнала)
14 Школа - колыбель народа: Передовая статья // Известия. 1988, 16 августа
15 См.: Дынкин Е. Б., Молчанов С. А., Розенталь А.Л., Топыго А.К. Математические задачи,- М, 1965, С, 10
16 См.: Глязер С. Познавательные игры,- М., 1951, С. 122
17 См.: Шаталов В.Ф. Опорные конспекты по астрономии,- Киев, 1974
18 Тульчинский М.Е. Сборник качественных задач по физике.-М., 1965. С. 14.
19 Капитанчук В.А. Оригинальные способы преподавания К. А. Тимирязева и рациональное их использование// Общедидактические проблемы методов обучения.- М., 1977, С. 305-306.
20 Онищук В.А., Типы, структура и методика урока в школе - Киев, 1976. С. 9.
21 Петровский А. В. Популярные беседы по психологии.- М., 1977. С. 64.
22 Там же. С. 49.
23 Каменский Я. А. Избранные педагогические сочинения. Т, П.- М., 1939, С. 200.
24 Гумилев Л.Н. Поиски вымышленного царства.- М., 1970. С.
448.
25 Крутецкий В. А. Психология математических способностей школьников.М., 1968. С. 197.
26 См.: Перышнин А. В., Родина Я, А. Физика 6-7.- М.: Просвещение, 1986, С. 303
27 См.: Кимбар А., Качинскай А. М., Заикина Н. С. Сборник самостоятельных и контрольных работ по физике,- Минск, 1975.
28 Виленкин Н. Я., Чесноков А. С., Шварцбурд С. И. Математика-5.- М.: Просвещение, 1987. С. 200: "В двух бочках было 725 л бензина. Когда из первой бочки взяли 1/3 имевшегося там бензина, а из второй взяли 2/7 имевшегося там бензина, то в обеих бочках стало бензина поровну, Сколько литров бензина было в каждой бочке первоначально?"