KnigaRead.com/
KnigaRead.com » Домоводство, Дом и семья » Прочее домоводство » Александр Проценко - Энергетика сегодня и завтра

Александр Проценко - Энергетика сегодня и завтра

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Проценко, "Энергетика сегодня и завтра" бесплатно, без регистрации.
Перейти на страницу:

Например, однажды в прессе промелькнуло сообщение, будто достаточно было установить в теплицах одного из совхозов красные светофильтры на осветительные лампы, и урожай повысился в полтора-два (!) раза. Конечно, растение любит красный свет. Ведь именно поэтому его преобладающий цвет зеленый. Но зачем устанавливать красный фильтр?

Если из видимого солнечного "белого" света извлечь одну компоненту, в данном случае красную часть спектра с длиной волны от 600 до 700 микрометров, то "белое" сменится на "дополнительную" окраску. Дополнительный цвет к красному - зеленый. Растение зеленое именно потому, что из солнечного излучения оно интенсивно поглощает красную компоненту и отражает "дополнительную".

Отсюда вовсе не вытекает, что для роста растения полезно отсекать часть солнечного спектра. А кроме того, дешевых идеальных фильтров нет, а в применяемых частично поглощаются все длины волн.

Растение действительно любит красный свет. Что это значит? Число квантов света на единицу энергии красной части спектра больше, чем в сине-фиолетовом диапазоне, поскольку энергия кванта с увеличением длины волны падает. Но ведь и более "энергичные" кванты также могут осуществлять акты фотосинтеза, хотя и с меньшей эффективностью. Так зачем же их отсекать?

Интересные соображения я нашел в статье доктора биологических наук Б. Гуляева. Он пишет, что, если всего 20 процентов красных лучей заменить на синие, существенно увеличится скорость поглощения листьями углекислого газа. Зеленые лучи лучше проникают сквозь листву и обеспечивают энергией листья нижних ярусов.

Очень чувствительны к световому спектру процессы, от которых зависит развитие растения. При полном отсутствии "синих" и "зеленых" фотонов можно выращивать только листовые формы типа салата.

Можно сделать вывод, что для всех высших наземных растений идеальным источником света является солнце. В видимой части спектра его излучение у земной поверхности содержит около 30 процентов синих лучей и примерно по 35 процентов зеленых и красных. Создать лампы, которые имели бы такую спектральную характеристику, пока не удается. Наилучшими "солнцеподобными" параметрами обладают пока люминесцентньи лампы разного вида. И все же предпринимаются попытки улучшить естественный солнечный свет.

Для покрытия теплиц предлагается использовать но стекло и не обычную полиэтиленовую пленку, а фоторедуцирующую. Механизм редуцирования света примерно такой же, как и в люминесцентных лампах. В пленку введены люминофоры, которые переводят коротковолнвую ультрафиолетовую часть спектра в видимую часть, тем самым как бы несколько увеличивая силу солнца в этой части. Сообщается, что фоторедуцирующая пленка позволяет увеличить урожайность различных культур на 10-60 процентов.

Вряд ли имеет смысл отвергать предлагаемый способ сразу. Ведь "испытания проведены в различных климатических зонах страны". Но для понимания физики п биологии процесса следует помнить, что ультрафиолетовая часть спектра энергетически составляет не болое 20 процентов от видимой. И даже если половину ее преобразовать в видимую часть, то общая энергия видимого света увеличится не более чем на 10 процентов. А ведь для растений полезен и ультрафиолет, который отсекается фоторедуцирующей пленкой.

Согласно детальным исследованиям в растениях имеются вещества, активно поглощающие ультрафиолетовые лучи. Обнаружено, что добавка таких лучей к световому потоку вызывает более интенсивный рост и развитие растений. Связь света, температуры и фотосинтеза очень сложная и разная для разных культур.

Вот передо мной графики, показывающие зависимость между интенсивностью фотосинтеза и температурой. Это - кривые с горбом. Значит, существует оптимальная температура. Ниже ее и выше ее фотосинтез идет хуже.

Для каждой освещенности - своя кривая. Скажем, для 15 градусов фотосинтез максимален при освещенности 20 тысяч люкс. Если в этих условиях освещенность увеличить в полтора раза, ничего не изменится. Вероятно, фотосинтез даже ухудшится, а количество затраченной энергии увеличится. Этот пример я привожу как раз для того, чтобы показать, насколько сложны механизмы фотосинтеза и как осторожно нужно относиться к различным экспериментам и рекомендациям.

Основное сырье для создания биомассы - вода и углекислый газ. Интенсивность фотосинтеза возрастает при увеличении концентрации углекислого газа в атмосфере. Полезность такой подкормки зависит и от температуры, освещенности, наличия влаги. Как видим, связь очень многопараметрическая, особенно если учесть, что существует еще зависимость от вида растений, состояния почвы.

Некоторые главные связи изучены, разработаны оптимальные технологические приемы. Когда же не учитываются те или иные факторы, неизбежен отрицательный результат.

Например, углекислый газ подается в теплицы из специального устройства, в- котором сжигается природный газ, и если температура в теплице начинает расти выше оптимальной, то, несмотря на увеличение концентрация углекислого газа, фотосинтез уменьшается. Значит, природный газ сжигают зря.

Иногда же углекислый газ подают прямо от котельных агрегатов, обогревающих теплицы, не проводя никакой его обработки, что приводит к еще худшим последствиям. Ведь в продуктах сгорания, кроме углекислого газа, содержатся окислы серы и азота, этилен, пропилен, формальдегид, которые задерживают рост растений.

По оценкам английского института парниковых культур, ущерб из-за загрязнений тепличной атмосферы в Англии составляет 2 миллиона фунтов стерлингов в год. Что же делать?

Особо действенных рекомендаций нет. Желательно использовать малосернистое топливо, тщательно регулировать горелки. По-видимому, целесообразно воспользоваться методами, которые разработаны энергетиками для очистки отходящих газов или для снижения концентрации окиси азота.

Есть еще один путь - вывести специальные сорта растений, устойчивые к токсичным веществам.

Но это уже вгзляд в далекое будущее, когда человек, возможно, уже и не будет производить токсичных веществ. Если говорить о будущем, то давайте лучше помечтаем вместе с биологами.

По их мнению, не вся сельскохозяйственная продукция будет производиться в крупных агропромышленных комплексах. Специалисты из научного центра биологических исследований АН СССР в Пущине, занимающиеся программой "Экополис" (экология города и его пригородов), считают, что частично город может самообеспечиваться продуктами питания, используя свои ресурсы энергии.

В препринте "Экополис. Введение и проблемы" говорится, что даже превращение в заповедник одной десятой части суши позволит сохранить лишь половину фондов мировой фауны. Распахиваются новые земли, а города территориально все больше "расплываются". Какой же выход?

Авторы исходят из того, что каждый горожанин, сознается он в этом или нет, мечтает общаться с природой. Город же изолирует людей от нее. И вот немного фантазии. "Представьте небольшой город, который частично обеспечивает жителей продуктами питания. Солнечная и тепловая энергия, выделяющаяся на его территории, направлена на выращивание пищевых или технических растений. Урожаи в городской черте могут быть даже выше, чем в естественном растительном сообществе. Поможет и дополнительное тепло, и подкормка растений углекислым газом. Наружная часть стен многих домов представляет собой фотосинтетическую пластину.

Труба ТЭЦ служит вертикальным каркасом и источником тепла для оранжереи. Снаружи она напоминает застекленную башню".

А где же природа? Совсем близко. Через город текут ручьи, около них буйствует жизнь. На месте привычных газонов раскинулись луга с медоносными и прочими травами. В городе идет сенокос.

Мандариновый бензин

Общая масса "живого" вещества на земле (растительного, животного, бактериального) - 2500 миллиардов тонн. Ежегодно воспроизводится 400 миллиардов тонн, из которых несколько менее половины - растительность.

Лишь одни леса дают прирост около 25 миллиардов тонн. Уже в 70-80-е годы человечество расходовало около одной десятой древесного прироста, а к 2000 году эта величина может вырасти вдвое. Особенно быстрыми темпами идет уничтожение влажных тропических зарослей, составляющих половину всех лесов мира. Подсчитано, что при нынешнем темпе их вырубки (30 гектаров в минуту) тропические джунгли могут исчезнуть через 100 лет.

Леса нашей страны, составляющие четверть древесного фонда планеты, расходуются более экономно.

Тревога о лесе связана не только с тем, что в тропиках на их месте возникают пустыни. Самое опасное - на наших глазах исчезают зеленые легкие планеты. Ведь леса в результате фотосинтеза усваивают наряду с фитопланктоном определенную часть выделяющегося в атмосферу углекислого газа и возвращают ей кислород.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*