KnigaRead.com/
KnigaRead.com » Домоводство, Дом и семья » Прочее домоводство » Владимир Карцев - Приключение великих уравнений

Владимир Карцев - Приключение великих уравнений

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Владимир Карцев, "Приключение великих уравнений" бесплатно, без регистрации.
Перейти на страницу:

Применив уравнения к одному конкретному случаю, Максвелл нашел, что неизвестное число с оказалось равно отношению электромагнитной и электростатической единиц заряда - примерно 300 000 километрам в секунду!

Совпадение было слишком разительным, чтобы не принять его во внимание. Таинственное с было равно скорости света? Но при чем тут скорость света? Максвелл настолько глубоко верил в свои уравнения, что наличие физически не очевидного коэффициента его беспокоило. Он непрерывно думал о странном явлении. И уравнения "думали". Рассмотрим первые два из них. Согласно первому, любой ток вызовет возникновение магнитного поля в окружающих областях пространства. Постоянный ток, например, вызовет возникновение вокруг него постоянного магнитного поля. Такое поле, однако, не сможет вызвать электрического поля в "следующих" областях, поскольку электрическое поле, согласно второму уравнению, возникает лишь при изменяющемся магнитном поле.

Но картина коренным образом изменяется, если первоначальный ток переменный. Вокруг переменного тока создается переменное магнитное поле, способное уже создать в "следующем" элементе пространства электрическое поле; то, в свою очередь за счет "тока смещения" создаст новое магнитное поле, а оно точно так же создаст еще дальше поле электрическое. И так будет продолжаться до бесконечности.

Другими словами, электромагнитное поле, как с поразительной ясностью понял Максвелл, распространяется в виде волны, причем волны незатухающей - энергия магнитного поля в пустоте полностью переходит в энергию поля электрического, и наоборот.

Но ведь в виде точно таких "поперечных" волн распространяется и свет! И Максвелл делает сразу два далеко идущих вывода.

Электромагнитное поле распространяется в пространстве в виде поперечных волн. Убежденный в универсальности своих уравнений, Максвелл показывает, что "свет есть электромагнитное возмущение". Родство двух явлений предчувствовал еще Ломоносов, предлагавший осуществить соответствующий опыт, а Фарадей прямо доказал единую природу явлений, осуществив эксперименты по "электромагнитному вращению света". Точно так же, как существуют излучения световые, должны существовать и излучения электромагнитные.

Электромагнитные волны распространяются в пространстве со скоростью света, то есть со скоростью 300000 километров в секунду. Скорость распространения волн зависит от свойств среды.

Признание конечной, хотя и очень большой, скорости распространения электричества и магнетизма, камня на камне не оставляло от теорий сторонников "мгновенного дальнодействия".

В предсказании электромагнитных волн Максвелл значительно обогнал свое время. Но он не мог знать, что Фарадей еще в 1832 году оставил в Королевском обществе для хранения в архивах запечатанный конверт с надписью "Новые воззрения, подлежащие в настоящее время хранению в архивах Королевского общества".

В 1938 году, через сто шесть лет, конверт этот был вскрыт в присутствии многих английских ученых. Слова, которые записаны были на пожелтевшем листке, запечатанном в конверте, потрясли всех: выяснилось, что уже Фарадей ясно представлял себе, что индуктивные явления распространяются в пространстве с некоторой скоростью, причем в виде волн.

"Я пришел к заключению, что на распространение магнитного воздействия требуется время, которое, очевидно, окажется весьма незначительным. Я полагаю также, что электрическая индукция распространяется точно таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебания взволнованной водной поверхности... По аналогии я считаю возможным применить теорию колебаний к распространению электрической индукции", - писал он на основании далеко идущих аналогий между электромагнитной индукцией, светом и звуком. Фарадей писал, что хотел "закрепить открытие за собой определенной датой и таким образом иметь право, в случае экспериментального подтверждения, объявить эту дату - датой моего открытия. В настоящее время, насколько мне известно, никто из ученых, кроме меня, не имеет подобных взглядов".

И Фарадей, и Максвелл не дожили до полного торжества их воззрений. Оба они умерли до того, как русские ученые Н. Н. Шиллер, П. А. Зигов, С. Я. Терешин, П. Н. Лебедев и немецкие физики Г. Герц и Л. Больцман показали полную справедливость теории электромагнитного поля Максвелла и Фарадея.

После выхода "Трактата об электричестве и магнетизме", в котором сформулирована максвелловская теория электромагнитного поля, Максвелл решает в целях популяризации и распространения своих идей написать книгу "Электричество в элементарном изложении". Максвелл работал над книгой, а самочувствие его было все хуже и хуже. Эдинбургский доктор Джордж У. Лоррейн, осмотрев ученого, объявил ему, что он болен раком и что жить ему осталось не более месяца...

Зачем, когда так ярко солнце,

Зачем, когда надежды с нами,

Зачем, когда прекрасна жизнь,

Такая боль приходит?

Джеймс Клерк Максвелл.

Максвелл спокойно перенес удар. Он вообще никогда ни на что не жаловался, - и поспешил в Кембридж, где его ждали рукопись "Электричества" и тяжело больная жена.

В Кембридже царило уныние - "Максвелл уходит". Эти печальные слова то и дело звучали в гулких коридорах и на пустынных кембриджских ноябрьских улицах.

5 ноября 1879 года его не стало. Доктор Пагет, принявший его последний вздох, писал:

"Во время болезни, лицом к лицу со смертью, он оставался таким же, как прежде. Спокойствие духа никогда не покидало его. Через несколько дней после возвращения в Кембридж его страдания приняли очень острый характер... Но он никогда не жаловался... Даже близость смерти не лишила его самообладания... За несколько дней до смерти он спросил меня, как долго ему осталось жить... Казалось, он беспокоился только о своей жене, здоровье которой за последние несколько лет пошатнулось.

Не было человека, который бы встретил смерть с большим спокойствием и в более ясном сознании".

Сорокавосьмилетний гений угас, так и не став свидетелем торжества своей теории.

А она завоевывала себе позиции с большим трудом. Число слушателей, записывавшихся на лекции по теории электромагнитного поля (в английских университетах студент сам выбирает предметы, которые он хотел бы изучать), было смехотворно мало.

Нужен был толчок, какое-то яркое событие, которое привлекло бы внимание физиков и показало бы во всей полноте мощь новой теории.

Открытие вопреки себе

Когда Максвелл создал свою теорию электромагнитного поля, будущий великий ученый Генрих Рудольф Герц в коротких штанишках посещал первые классы гимназии. Его учитель вспоминал, что Герц учился блестяще и был непревзойденным, когда дело касалось сообразительности и ясности восприятия. В противоположность Максвеллу, он обожал все предметы без исключения - в равной степени физику и арабский язык. Он любил писать стихи и вытачивать фигурки на токарном станке.

Большую роль в упрочении теории Максвелла сыграли опыты Петра Николаевича Лебедева по обнаружению давления света. Знаменитый физик Кельвин (автор так называемой "температурной шкалы Кельвина") сказал как-то Клименту Аркадьевичу Тимирязеву: "Вы знаете, я никогда не признавал светового давления, ваш Лебедев убедил меня". Кроме светового давления, лорд Кельвин не особенно жаловал и породившую необходимость такого давления теорию Максвелла.

Его отец был сенатором, а мать, как сейчас сказали бы, домохозяйкой. Будущий великий физик родился очень слабым - врачи единодушно утверждали, что он - не жилец на белом свете. И действительно, болезни преследовали Герца всю жизнь - у него болели поочередно и все вместе: глаза, зубы, уши...

С восемнадцати лет Генрих Герц учится в технических школах. Все шло хорошо до тех пор, пока Генриху приходилось изучать разнообразные дисциплины общего характера, например, физику и математику. Но когда дело дошло до специализации, то есть до избрания конкретных технических курсов, которые на всю жизнь должны были определить направление деятельности Герца, он внезапно меняет свое решение: "Раньше я часто говорил себе, что быть посредственным инженером для меня предпочтительней, чем посредственным ученым. Но теперь я думаю, что прав Шиллер, сказавший: "Боишься жизнью рисковать - тебе успеха в ней не знать", и что излишняя осторожность была бы с моей стороны безумием". Какой прекрасный пример для сегодняшних десятиклассников!

Герц бросает Мюнхенскую высшую техническую школу и поступает в Берлинский университет, где попадает в очень хорошие руки - его руководителем становится Герман Гельмгольц, едва ли не самый видный немецкий физик того времени. В числе его преподавателей были и другие виднейшие физики, например Кирхгоф.

Но прежде стоит поговорить о Гельмгольце, поскольку вся короткая научная жизнь Герца прошла под его покровительством, а научные взгляды Герца сформировались в громадной степени под влиянием взглядов самого Гельмгольца.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*