KnigaRead.com/
KnigaRead.com » Домоводство, Дом и семья » Прочее домоводство » Неизвестен Автор - Физические эффекты и явления

Неизвестен Автор - Физические эффекты и явления

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн неизвестен Автор, "Физические эффекты и явления" бесплатно, без регистрации.
Перейти на страницу:

5.3.3. Ультразвуковой капиллярный эффект (открытие N109).

Явление капиллярности заключается в том, что при помещении в жидкость капилляра, смачиваемого жидкостью, в нем под действием сил поверхностного натяжения происходит подьем жидкости на некоторую высоту. Если жидкость в капилляре совершает колебания под влиянием источника ультразвука, то капиллярный эффект резко возрастает, высота столба жидкости увеличивается в несколько десятков раз, значительно во и скорость подьема.

Экспериментально доказано, что в этом случае жидкость толкает вверх не радиационное давление и капилярные силы, а стоячие ультразвуковые волны. Ультразвук снова и снова как бы сжимает столб жидкости и поднимает его вверх. Открытый эффект уже очень хорошо используется в промышленности, например, при пропитке изоляционными составами обмоток электродвигателей, окраске тканей, в теплвых трубах и т.п.

А.с. 437 568: Способ попитки капиллярных пористых тел жидкостями и расплавами, например, полимерным связующим, с применением ультразвуковых колебаний, отличающийся тем, что с целью интенсификации процессов пропитки ультразвуковые колебания сообщают пропитываемому телу.

5.3.4. Трудно перечислить все эффекты, возникающие в результате воздействия ультразвука на вещество, поэтому кратко перечислим основные области прменения ультразвука и приведем в заключение несколько интересных изобретений, показывающих широкие возможности использования ультразвука в изобретательстве.

Твердые вещества

---------------

- размерная обработка сверхтвердых и хрупких материалов (сверление отверстий сложной формы, шлифование, полирование, наклеп, волочение проволоки, прокатка фольги и т.д.)

- лужение и паяние металлов, керамики, стекла и т.п.

- сварка металлов и полимеров.

А.с. 505 540: Способ сварки трением встык разнородных металлов при котором осуществляют вращение одной заготовки, кроковку стыка и обжатие его при помощи осадочной матрицы, надетой на неподвижную заготовку, отличающийся тем, что с целью повышения стабильности качества сварного шва и стойкости матрицы, проковку и обжатие стыка производят с наложением на осадочную матрицу поперечных звуковых колебаний с пучностью напряжений в очаге деформации при с менее окружной скорости вращающейся заготовки.

Жидкости (кавитирующие)

- очистка деталей от жировых и других загрязнений

А.с. 120 613: Устройство для автоматической очистки деталей, например, сеток радиоламп посредством промывочной жидкости, включающие промывочную ванну, транспортер, укладочное и разгрузочное приспособление, отличающееся тем, что с целью повышения качества очистки, в промывочной ванне установлены ультразвуковые излучатели с концентраторами ультразвуковой энергии, служащие для создания фонтанов промывочной жидкости, омывающих сетки, перемещаемые над промывочной ванной.

- диспергирование твердых порошкообразных материалов в жидкостях, эмульгирование несмешивающихся жидкостей.

А.с. 517 294: Способ получения жирового концентрата, включающий смешивание жира с белковым стабилизатором и высушивание, отличающийся тем, что с целью длительного хранения высококилотных жиров, а также удешивления способа, жир перед смешиванием нейтрализуют в присутствии катализатора, смесь жира со стабилизатором эмульгируют с помощью ультразвука в течении 10-15 минут, а в качестве стабилизатора используют дунст.

- получение аэрозолей.

- полимиризация или деструкция высокомолекулярных соединений, ускорение массообразных и химических процессов.

- разрушение биологических обьектов (микроорганизмов).

Действие ультразвука на жидкость базируется на использовании вторичных эффектов кавитации - высоких локальных давлений и температуры, образующихся при схлопывании кавитационных пузырьков.

Г а з ы

- сушка сыпучих, пористых и других материалов.

- очистка газов от твердых частиц и аэрозолей.

5.3.5. Акустомагнетоэлектрический эффект.

Звук способен сортировать не только яблоки, но и электроны. Если поперек направления распространения звука в проводящей среде наложить магнитное поле, то электроны, которые увлекаются звуком, будут отклоняться в этом поле, что приведет к возникновению поперечного тока или, если образец "разомкнуть" в поперечном направлении, электродвижущей силы (ЭДС). Но магнитное поле в соответствии с законом Лоренца отклоняет электроны разных скоростей по разному, поэтому величина и даже знак ЭДС показывают, какие электроны увлекаются звуком, то есть коковы свойства электронного газа в данной среде. В каждом веществе звук увлкает за собой группу электронов характерных именно для дпнного вещества. Если звук проходит через границу двух веществ, то одни электроны должны смениться другими, например, более "холодные", более "горячими". При этом от границы будет тепло, а сама граница охлаждаться. Данный эффект похож на известный эффект Пельтье (см. раздел 9.2.2.).

Однако принципиальное отличие этого эффекта от эффекта Пельтье состоит в том, что он не исчезает, даже при очень низких температурах и охлаждение может продолжаться до температур, близких к абсолютному нулю. Это открытие зарегистрировано под номером 133 в следующей формулировке:"Установлено неизвестное ранее явление возникновение в телах, проводящих ток, перемещенных в магнитном поле, при прохождении через них звука, электродвижущей силы поперек направления распространениязвука, обусловленной взаимодействием со звуковой волной носителей заряда, находящихся в различных энергетических состояниях". На основе открытия уже сделано ряд изобретений.

А.с. 512 422: Способ измерения времени релаксации энергии носителей заряда в кристалле, заключающийся в измерении проводимости и разности потенциалов на исследуемом образце, отличающийся тем, что с целью упрощения и повышения точности измерения, в образец вводят ультразвуковую волну, измеряют разность потенциалов в направлении распространения волны и проводимость в перпендикулярном направлении.

А.с. 543 140: Способ усиления поверхностных звуковых волн в пьезоэлектическом полупроводнике основанный на взаимодействии звуковых волн с электрическим полем, отличающийся тем, что с целью повышения эффективности усиления, дрейфовое напряжение прикладывается в направлении, перпендикулярном распространению поверхностной звуковой волны.

5.4. Волновое движение.

Волна - это возмущение, распространяющееся с конечной скоростью в пространстве и несущее с собой энергию. Суть волнового движения состоит в переносе энергии без переноса вещества. Любое возмущение связано с каким-то направлением (вектор электрического поля в электромагнитной волне, напрвление колебаний частиц при звуковых волнах, градиент концентрации, градиент потенциала и т.д.). По взаимоположению вектора возмущения и вектора скорости волны, волны подразделяются на продольные (направление вектора возмущения совпадает с направлением вектора скорости) и поперечные (вектор возмущения перпендикулярен вектору скорости). В жидкостях и газах возможныв только продольные волны, в твердых телах и продольные и поперечные.

Волна несет с собой и потенциальную и кинетическую энергию. Скорость волны, т.е. скорость распространения возмущения, зависит как от вида волны, так и от характеристик среды, например, от прочности бетона при затвердевании. Измеряя скорость распространения ультразвука можно определить, какую прочность набрал бетон в процессе выпаривания. ("Знание-сила"II,1969)

В Японии предложено пропускать ультразвук через стальные изделия перпендикулярно тем поверхностям, расстояние между которыми нужно измерить. Стальные изделия помещались в остную ванну, которая просвечивалась ультразвуковыми импульсами. Измерив время необходимое для прохождения импульса от каждого вибратора, определяли внешние разхмеры изделия /заявка Японии N 51-23193/.

При наличии дисперсии волн (см. раздел 5.4.7.) понятие скорости волны становится не однозначным; приходится различать фазовую скорость (скорость распространения определенной фазы волны) и групповую скорость, являющуюся скорость переноса энергии, что усложняет различные измерительные работы с помощью различного вида колебаний. В случае же когерентного колебания фазовая скорость может нести информацию о свойствах среды.

А.с. 288 407: Способ измерения паросодержания пароводяных смесей и количества парогазовых включений по а.с. N'131138, отличающийся тем, что с целью повышения точности и чувствительности при измерениях паросодержания в высокочастотных трактах с большими потерями, отраженный сигнал, фаза которого характеризует измеряемый параметр, выделяют из высокочастотного тракта, усиливают, ограничивают по амплитуде и сравнивают его фазу с фазой опорного когерентного высокочастотного колебания.

А.с. 412 421: Способ измерения скорости ультразвука в средах основанный на определении времени рапространения колебаний с помощью фазового сдвига, отличающийся тем, что с целью повышения точности измерения, модулируют колебания по фазе и одновременно пропускают через исследуемую и эталонную среду, измеряя на границах обеих сред относительную величину фазы колебаний, и по результатам измерения находят скорость ультразвука в исследуемой среде.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*