KnigaRead.com/

Николай Жаворонков - Создано человеком

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Николай Жаворонков, "Создано человеком" бесплатно, без регистрации.
Перейти на страницу:

Созданы и киборит, и карбонит, и теплонит в Институте сверхтвердых материалов Академии наук Украинской ССР. В том самом институте, который четверть века назад освоил выпуск искусственных алмазов. И хотя черные, неказистые на вид резцы, изготовленные из новых материалов, и отдаленно не напоминают сверкающие камни, для промышленности они поистине - алмазы. Да и как иначе назовешь инструмент, несколько штук которого способны обеспечивать годовую потребность такого гиганта, как Киевский завод имени И. Лепсе. Потребность же его определяется количеством выпускаемых изделии.

Одних только поршней для тракторных двигателей производится здесь несколько миллионов.

В общем, новые сверхтвердые материалы создаются в соответствии с самыми взыскательными потребностями курса на ускорение. Созданы и уже работают на его реализацию, обеспечивая потребности обрабатывающей техники с числовым программным управлением, восстановительные операции целого рода деталей для "Жигулей" и сельскохозяйственной техники и др.

Синтетические материалы успешно "спорят" с природными, неизменно выходя из столь необычного соревнования победителями.

Другой важной технической задачей является интенсификация доменного процесса, конвертерная плавка, непрерывная разливка стали, разработка технологии и организация производства титана, циркония стали основой коренных количественных и качественных изменений в металлургии.

Оказались, например, возможными разработка методов бескоксовой металлургии и создание сталеплавильных агрегатов непрерывного действия. Более того, восстановление железа из руд с помощью энергетических углей сегодня тоже реальность. А все вместе - это уже качественно иная перспектива отечественной металлургии.

Металлургии без коксовых и доменных печей.

Такое производство отвечает всем требованиям ускорения, поскольку резко снижает капиталовложения, выделяемые на его развитие, многократно повышает производительность труда, улучшает условия работы и существенно уменьшает загрязнение окружающей среды. Другими словами, отвечает тем экономическим и социальным требованиям, которые предъявляет к нему жизнь. Да и работает это производство экономно, максимально используя минеральное сырье.

Кстати, разумное применение последнего, как правило, сопряжено не просто с количественным сокращением норм использования руды или энергии, но и с их рациональным использованием и получением в качестве конечного продукта материалов, обладающих новыми, недосягаемыми прежде качествами. Развивающаяся отечественная техника, например, широко применяет так называемые аморфные или стеклообразные металлы.

Получают их методом, разработанным и внедренным в производство отечественными металлургами. Суть его в следующем: жидкий металл охлаждается с такой большой скоростью, что переходит в твердое состояние, минуя кристаллическую фазу. Например, когда расплавленный алюминий ударяется о криогенно охлаждаемую поверхность, он за одну миллионную долю секунды затвердевает, и образуется тонкая алюминиевая фольга.

Есть другой способ: расплавленный металл распыляется в холодном инертном газе и затвердевает, минуя стадию кристаллизации, в виде тонкого порошка.

Свойства полученных таким образом металлов поистине удивительны. Прочность и коррозионная стойкость деталей, изготовленных из этих порошков, возрастают многократно. Так, если обычная рядовая сталь с кристаллической структурой имеет прочность 30-40 кг/мм2 сечения, то изделие из аморфного порошка стали того же состава, уже 350 кг/мм2. Коррозионная стойкость аморфного обычного черного металла в 10-12 раз выше, чем кристаллической хромоникелевой стали. Объясняется многократное повышение прочности и коррозионной стойкости тем, что эти процессы происходят обычно на границе между микрокристаллами, образующими ту или иную структуру металла.

Как видите, возможности для их практического использования самые широкие, а исходное сырье - все те же железосодержащие руды и бокситы, отнюдь нередко встречающиеся в недрах.

Значительные успехи достигнуты и в создании методов получения и освоения в промышленном производстве элементарных полупроводников кремния и германия, а также сложных соединений на основе галлия, мышьяка, индия, фосфора и сурьмы, что определяется прогрессом в области химии и технологии получения веществ особой чистоты. Требования же к их чистоте непрерывно возрастают.

Еще атомная техника поставила в свое время перед наукой задачу создания веществ и материалов, содержащих не более тысячной доли нежелательных примесей.

Электронная техника ужесточила эти требования до миллионных долей. А техника передачи информации с помощью волоконной оптики - уже до миллиардных.

Вообще-то существуют жесткие параметры, которым должно соответствовать вещество, если оно "претендует"

на звание высокочистого: концентрация примесей в нем не может превышать десятитысячной доли процента.

Вещества эти - материальная основа ряда отраслей техники и промышленности, определяющих сегодня темпы и уровень научно-технического прогресса. По целевому назначению высокочистые вещества - это полупроводниковые, оптические материалы, материалы для микроэлектроники и электронной техники. Вот почему во всем мире так активно ведутся работы по созданию и совершенствованию методов их получения.

Существенный вклад в решение этой проблемы внесен в последнее время советским академиком Г. Г. Девятых.

Вместе с учениками и соратниками ученый провел обширный цикл исследований по разработке методов получения высокочистых летучих веществ. Объектом изучения стали простые вещества, летучие гидриды (соединения металла с водородом), металлорганические (имеющие связи металл - углерод) соединения. Дело в том, что в высокочистом состоянии они просто необходимы и для нужд народного хозяйства, и для исследовательских целей. Причем разнообразные материалы, получаемые на их основе, могут быть и в виде массивных образцов, и в виде тонких пленок.

И все же, чтобы по достоинству оценить труд, выполненный академиком, необходимо знать все его слагаемые.

А они, как и подобает научным разработкам, организовинным оптимальным образом, состоят из трех компонентов: познание изучаемого объекта или явления; создание на оспове полученных знаний нового (материала, прибора, процесса) и, наконец практическая реализация познанного и созданного.

В работах, о которых идет речь, все три компонента объединены столь тесно, что практически составили единое целое. Однако выделить главное, основное все же можно - это скрупулезное исследование методов глубокой очистки. Да и вывод, сделанный из него учеными, небезынтересен: химические методы, на которые всегда возлагались столь большие надежды при синтезе высокочистых материалов, не могут обеспечить получение веществ достаточной чистоты. Нужные качества гарантируют только многоступенчатые физико-химические методы очистки. Особенно так называемые кристаллизационные методы глубокой очистки.

Эти методы позволили ученым повысить степень чистоты ряда летучих веществ на целых три порядка (а каждый порядок - десятикратное увеличение качества). Чтобы понять, насколько трудоемкую работу удалось осуществить исследователям и, главное, насколько она значима, сошлюсь на авторитет известного советского материаловеда академика Н. П. Сажина. Его мнение однозначно - повышение чистоты вещества всего на один порядок - научный подвиг.

И это действительно так. Но и перспективы перед техникой и наукой такие вещества открывают удивительные. Это благодаря прогрессу в получении высокочистых летучих хлоридов в середине 70-х годов удалось в самые сжатые сроки развернуть работы по волоконной оптике и создать первые в стране линии волоконно-оптической связи.

Разработанные методы получения и анализа высокочистых летучих веществ уже нашли самое широкое применение на предприятиях химической и электронной промышленности в металлургии.

Рассказывая об этой суперважной работе (она удостоена Ленинской премии за 1986 год), осуществленной группой ученых Института химии АН СССР, я не зря обратил внимание читателей на те компоненты, из которых складывается современное исследование. Ведь еще недавно такое единение многие научные учреждения считали для себя необязательным, деля исследовательскую часть на чисто "научную" и "прикладную". Последней и вменялось в обязанность внедрение разработок в производство.

Сегодня положение резко изменилось. И если все же внедрение оказывается не всегда по силам разработчику, то рекомендации практикам, советы по реализации научных достижений - его прямая обязанность. Так, собственно, работает Институт химии АН СССР. Думаю, что такой в самом хорошем смысле практицизм только на пользу делу. Разумеется, многое зависит в этом смысле от руководителя учреждения. Институт химии АН СССР возглавляет академик, Герой Социалистического Труда, лауреат Ленинской и трех Государственных премий Григорий Алексеевич Разуваев. Ученый прошел в свое время прекрасную ленинградскую школу, одной из отличительных черт которой всегда было умение делать многое собственными руками. Это удивительное свойство живет, к счастью, теперь и в Горьковской научной химической школе.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*