KnigaRead.com/
KnigaRead.com » Документальные книги » Публицистика » Нассим Талеб - Чёрный лебедь. Под знаком непредсказуемости

Нассим Талеб - Чёрный лебедь. Под знаком непредсказуемости

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Нассим Талеб, "Чёрный лебедь. Под знаком непредсказуемости" бесплатно, без регистрации.
Перейти на страницу:

Я только что прочел три «научно-популярные» книги, посвященные исследованиям сложных систем: «Вездесущесть» Марка Бьюкенена, «Критическую массу» Филипа Болла[79] и «Почему мало что удается» Пола Ормерода. По мнению этих трех авторов, мир социальных наук полон степенных законов, и с таким взглядом я конечно же согласен. Они также заявляют, что многие из явлений такого порядка на самом деле универсальны, что есть удивительное сходство между разными процессами в природе и поведением социальных групп, с чем я тоже согласен. Подкрепляя свои исследования теориями различных сетей, они указывают на поразительное соответствие между так называемыми критическими явлениями в естественных науках и самоорганизацией социальных групп. Они объединяют процессы, порождающие лавины, социальные поветрия и «информационные каскады», с чем я опять же согласен.

Универсальность — одна из причин, по которым степенные законы, связанные с критическими точками, особенно интересуют физиков. Есть много ситуаций как в теории динамических систем, так и в статистической механике, когда многие свойства динамики возле критической точки не зависят от особенностей действующей динамической системы. Экспонента в критической точке может быть одинаковой для многих систем одной группы, даже если во многом другом системы различны. Я почти согласен с такой трактовкой универсальности. Наконец, все три автора призывают нас применять методы статистической физики, сторонясь эконометрики и гауссоподобных немасштабируемых распределений, как разносчиков чумы, в чем я с ними полностью солидарен.

Но все три автора, добиваясь точности или призывая к ней, допускают просчет, смешивая прямые и обратные процессы (задачу и обратную задачу), — что для меня есть величайший научный и эпистемологический грех. Они неодиноки в этом; почти каждый, кто работает с данными, но не принимает решений на основе этих данных, подвержен тому же греху, разновидности искажения нарратива. В отсутствие обратной связи ты смотришь на модели и думаешь, что они подтверждают реальность. Я верю в идеи этих трех книг, но не в способ их применения — и уж конечно не в точность, которую авторы им приписывают. На самом деле теория сложности должна учить нас подозрительнее относиться к научным разработкам «точных» моделей реальности. Она не делает всех лебедей белыми, это ясно; она делает их Серыми, и только.

Как я сказал раньше, мир для глядящего «снизу вверх» эмпирика с эпистемологической точки зрения — буквально мир иной. Мы лишены роскоши сидеть и медитировать над уравнением, правящим Вселенной; мы только наблюдаем данные, выдвигаем предположения о том, каким может быть процесс в действительности, и «калибруем» их, подправляя наше уравнение в соответствии с дополнительной информацией. По мере того как события разворачиваются перед нами, мы сравниваем то, что видим, с тем, что ожидали увидеть. Обычно открытие того факта, что история движется вперед, а не назад, сбивает с людей спесь, особенно с тех, кто знаком с искажением нарратива. Какими бы самонадеянными ни были бизнесмены, их часто приводят в чувство напоминания о разрыве между задумкой и результатом, между точными моделями и реальностью.

То, о чем я говорю, — это непроницаемость, неполнота информации, невозможность увидеть «генератор мира». История не открывает нам своих мыслей — мы должны их угадывать.

От представления к реальности

Вышеизложенная идея связывает все части книги. Многие изучают психологию, математику или теорию эволюции и потом пытаются выжать из них капитал, применяя свои знания в бизнесе. Я же предлагаю как раз противоположное: изучайте неистовую, незапротоколированную, отрезвляющую неопределенность рынка, чтобы вам приоткрылась природа случайности, которая дает ключ к психологии, теории вероятности, математике, теории решений и даже статистической физике. Вы увидите коварные проявления игровой ошибки, искажения нарратива, великого заблуждения платонизма, идущего от представления к реальности.

Впервые встретив Мандельброта, я полюбопытствовал, почему он, признанный ученый, которому уж наверно есть чем заняться в жизни, заинтересовался таким низменным предметом, как финансы. Ведь финансы, экономика, по моим представлениям, — это такая сфера, где набираются опыта, наблюдая разные эмпирические явления, и пополняют свой банковский счет деньгами, прежде чем заняться чем-то большим и лучшим, послав «в ж… деньги». Ответ Мандельброта гласил: «Данные, золотая жила данных!» В самом деле, все забывают, что, прежде чем перейти к физике и геометрии природы, он начинал в экономике. Работа с таким изобилием данных сбивает с нас спесь; она вооружает нас интуитивным пониманием того, в каком направлении нужно совершать путь между представлением и реальностью.

Проблема зацикленности статистики (которую также можно назвать статистическим порочным кругом) состоит в следующем. Скажем, вам нужны прошлые данные, чтобы определить, является ли распределение вероятности нормальным, фрактальным или каким-то еще. Нужно установить, достаточно ли у вас данных, чтобы ваше утверждение было обоснованным. Как узнать, достаточно ли у нас данных? Из распределении вероятности. Оно покажет, хватает ли у тебя данных, чтобы то, что ты предполагаешь, «заслуживало доверия». Для кривой нормального распределения достаточно малого количества точек (опять закон больших чисел). А как узнать, что распределение нормальное? Вообще-то на основании данных. Итак, нам нужны данные, чтобы узнать, каково распределение вероятности, и распределение вероятности, чтобы узнать, сколько данных нам нужно. Это порочный крут.

Такого круга не возникает, если предположить заранее, что распределение нормальное. По определенной причине свойства нормального распределения довольно легко выявляются. В отличие от тех, что присущи распределению в Крайнестане. Поэтому выбор гауссианы для выведения некоего общего закона очень удобен мы используем его по умолчанию именно по этой причине. Я не устаю повторять, что априорная ставка на гауссиану допустима лишь в небольшом числе областей, таких как статистика преступности, уровни смертности, вопросы из Среднестана. Но только не там, где дело касается исторических данных с неизвестными свойствами и крайнестанских вопросов.

Но почему статистики, работающие с историческими данными, закрывают на это глаза? Во-первых, им не хочется признавать, что вся их деятельность перечеркивается проблемой индукции. Во-вторых, они не несут никакой ответственности за результаты своих предсказаний. Соревнование, устроенное Макридакисом, показало нам, что они во власти искажения нарратива и не хотят этого знать.

Еще раз: опасайтесь предсказателей

Поднимем проблему на уровень выше. Как я заметил ранее, существует много модных моделей, пытающихся объяснить происхождение Крайнестана. Вообще-то они группируются в два широких класса, но встречаются и другие подходы. Первый класс — это простые модели типа «деньги идут к деньгам» (или «успех тянет за собой успех»), объясняющие скопление людей в городах, доминирование на рынке компании «Майкрософт» (а не «Эппл») и формата VHS (а не Betamax), создание академических репутаций и т.д. Второй класс включает в себя так называемые «модели просачивания», в центре внимания которых — не поведение индивида, а среда его обитания. Когда льешь воду на пористую поверхность, структура поверхности оказывается важнее, чем свойства жидкости. Когда песчинка ударяется о кучу других песчинок, именно характер местности определяет, сойдет ли лавина.

Почти все модели, разумеется, претендуют на прогностическую точность, и это меня бесит. Они — хорошие инструменты для иллюстрации происхождения Крайнестана, но я настаиваю на том, что «генератор реальности» не подчинен им настолько, чтобы с их помощью можно было делать точные прогнозы. Все, что я нахожу в современной литературе на тему Крайнестана, свидетельствует именно об этом. Перед нами здесь снова встает серьезнейшая проблема калибровки, так что лучше бы нам избежать обычных ошибок, совершаемых при калибровке нелинейного процесса. Напомним, что у таких процессов больше степеней свободы, чем у линейных (как мы показали в главе и), а следовательно, чрезвычайно велик риск того, что модель окажется неправильной. Мне то и дело попадают в руки книги или статьи, которые ратуют за применение моделей статистической физики к реальности. Например, восхитительные книги Филипа Болла насыщены информацией и иллюстративным материалом, но это не основа для точных количественных моделей. Не встречайте их по одежке.

Однако посмотрим, что мы можем позаимствовать у этих моделей.

Снова счастливое решение

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*