KnigaRead.com/
KnigaRead.com » Документальные книги » Публицистика » Нассим Талеб - Чёрный лебедь. Под знаком непредсказуемости

Нассим Талеб - Чёрный лебедь. Под знаком непредсказуемости

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Нассим Талеб, "Чёрный лебедь. Под знаком непредсказуемости" бесплатно, без регистрации.
Перейти на страницу:

Теперь о том, почему я называю это дело мандельбротовской, или фрактальной, случайностью. Каждый отдельный кусочек и деталь головоломки уже упоминались кем-нибудь раньше, скажем, Парето, Юлом и Ципфом, но именно Мандельброт а) соединил точки, б) связал случайность с геометрией (причем с ее определенной областью) и в) придал предмету естественную завершенность. По правде говоря, многие математики знамениты сегодня отчасти потому, что он использовал их работы, чтобы подвести фундамент под собственные построения, — как делаю и я в этой книге. "Мне пришлось придумать себе предшественников, чтобы люди относились ко мне серьезно", — сказал он мне однажды, так что его ссылки на мнение авторитетов — всего лишь риторический прием. Почти всегда можно раскопать тех, кто уже высказывал данную мысль, и опереться на их вклад. Олицетворением большой идеи, носителем "брэндового имени" становится в науке тот, кто соединяет точки, а не тот, кто случайно сделал наблюдение. Даже Чарльз Дарвин, который, как утверждают невежды от науки, "придумал" выживание наиболее приспособленных, заговорил об этом не первым. Он написал во введении к "Происхождению видов", что излагаемые им факты не всегда новы; но его выводы, как ему кажется, "представляют интерес" (такова его по-викториански скромная формулировка) . В конечном счете известность приобретают те, кто делает выводы и улавливает важность идей, видя их реальную ценность. Именно они способны развить тему.

Итак, вот что представляет собой мандельбротова геометрия.

Геометрия природы

Треугольники, квадраты, круги и другие геометрические фигуры, которые заставляли многих из нас зевать в классе, — сами по себе прекрасные и чистые понятия, но, похоже, в сознании школьных учителей, а также современных архитекторов и дизайнеров, они встречаются чаще, чем в природе. Пусть бы так, да вот только большинство из нас об этом не подозревает. Горы — не треугольники и не пирамиды; деревья — не окружности; прямых линий почти нигде не увидишь. Мать-природа не посещала уроков геометрии и не читала книг Евклида Александрийского. Ее геометрия полна зазубрин, но с собственной логикой, причем такой, которую легко понять.

Я уже говорил, что мы, похоже, от рождения склонны платонизировать и мыслить исключительно в рамках пройденного материала: любому, будь то хоть каменщик, хоть натурфилософ, не так легко вырваться из рабства рефлексов. Подумайте, что великий Галилей, разоблачитель лжи в других вопросах, написал следующее:

Великая книга Природы всегда лежит раскрытая перед нашими глазами, и истинная философия записана в ней... Но мы не можем прочитать ее, если не выучим сперва языка и символов, с помощью которых она написана... Она написана на языке математики, а буквы ее—треугольники, круги и другие геометрические фигуры.

Галилей что, был незрячим? Даже великий Галилей, со всей своей знаменитой независимостью ума, не сумел ясным взором взглянуть на мать-природу. Я уверен, что у него в доме были окна и что он иногда выходил на свет божий: ему следовало бы знать, что треугольники в природе найти нелегко. Гораздо легче промыть себе мозги.

Мы либо слепы, либо невежественны, либо и то и другое вместе. Ведь совершенно же очевидно, что геометрия природы — не евклидова, однако никто, почти никто, этого не видит.

Подобная (физическая) слепота равносильна игровой ошибке, заставляющей нас думать, что казино — это олицетворение случайности.

фрактальность

Но сначала о том, что такое фракталы. Потом мы покажем, как они связаны с так называемыми степенными, или масштабируемыми, законами.

Слово фрактал введено Мандельбротом для описания геометрии неровного, ломаного (оно образовано от латинского fractus — дробный, фрагментарный). Фракталъностъ — это повторение в разном масштабе геометрических узоров, плодящих все более и более мелкие версии самих себя. Каждая часть в некоторой степени напоминает целое. Я постараюсь показать в этой главе, как фракталы соотносятся с тем типом неопределенности, который должен носить имя Мандельброта: мандельбротовская случайность.

Прожилки в листьях выглядят как ветви; ветви выглядят как деревья; камни выглядят как маленькие горы. Когда предмет меняет размер, не происходит качественных изменений. Если взглянуть на побережье Британии с самолета, оно напоминает то, что ты видишь, глядя на его крохотный кусочек в увеличительное стекло. Такой род самоподобия подразумевает, что одно обманчиво короткое и простое правило повторения может использоваться либо компьютером, либо, более произвольно, матерью-природой, чтобы строить формы, кажущиеся очень сложными. Это правило может оказаться полезным для компьютерной графики, но, что важнее, именно так работает природа. Мандельброт выстроил математический объект, известный сейчас как множество Мандельброта, самый знаменитый объект в истории математики. Множество приобрело популярность у последователей теории хаоса, потому что оно плодит картины все возрастающей сложности, подчиняясь на вид пустяковому рекурсивному правилу (то есть такому, которое способно применять себя к себе же до бесконечности). Можно рассматривать этот объект во все более и более крупном масштабе, так и не достигая предела — формы будут по-прежнему узнаваемыми. Они никогда не повторяются, но обладают сходством друг с другом, общими семейными чертами.

Такие построения играют заметную роль в искусстве. Вот несколько примеров:

Визуальные искусства. Сейчас в основе большинства объектов компьютерной графики лежит та или иная разновидность мандельбротова фрактала. Фракталы также встречаются в архитектуре и живописи — разумеется, неосознанно включенные художниками в структуру произведения.

Музыка. Медленно напойте первые четыре ноты Пятой симфонии Бетховена: "Та-та-та-та!" Затем замените каждую отдельную ноту тем же самым началом из четырех нот, так что получится такт из шестнадцати нот. Вы увидите (вернее, услышите), что каждая маленькая волна напоминает исходную большую. У Баха и Малера, например, музыкальная тема часто состоит из нескольких подтем, похожих на нее.

Поэзия. Поэзия Эмили Дикинсон, к примеру, фрактальна: крупное напоминает мелкое. Поэтесса, по мнению комментатора, "плетет продуманный узор из слов, размеров, рефренов, движений и звуков".

Сначала фракталы сделали Бенуа М. парией в математическом истеблишменте. Французские математики были в ужасе. Что? Картинки? Mon dieu! Это все равно что показать порнофильм собранию набожных православных бабушек в моем родном Амиуне. Поэтому Мандельброт некоторое время оставался интеллектуальным изгоем, работая в исследовательском центре "Ай-би-эм" на севере штата Нью-Йорк. Это было типичное "в ж... деньги!", так как айбиэмовское жалованье позволяло ему заниматься чем хочется.

Но масса людей (прежде всего компьютерщиков) сразу схватила суть. Книга Мандельброта "Фрактальная геометрия природы", вышедшая в свет четверть века назад, произвела настоящий фурор. Ею зачитывались в художественных кругах, она дала толчок новым идеям в искусстве, в архитектурном дизайне, даже крупным индустриальным проектам. Мандельброту предложили место профессора медицины! Может статься, легкие самоподобны? На лекции Бенуа М. ломом ломились художники и артисты, за что его прозвали "рок-звездой математики". Компьютерный век помог ему стать одним из самых востребованных математиков в истории, причем гораздо раньше, чем он был признан обитателями башни из слоновой кости. Мы вскоре увидим, что его теория, вдобавок к универсальности, обладает одним необычным свойством: она на редкость проста для понимания.

Несколько слов о его биографии. Мандельброт приехал во Францию из Варшавы в 1936 году, в двенадцать лет. Из-за тягот нелегальной жизни в оккупированной нацистами Франции он, учась в основном самостоятельно, отчасти избежал традиционного галльского образования с его отупляющей зубрежкой алгебры. Позже на него сильно повлиял его дядя Шолем, видный представитель французского математического истеблишмента, возглавлявший кафедру в Коллеж де Франс. Поселившись в Соединенных Штатах, Бенуа М. работал в основном как ученый-прикладник, лишь спорадически занимая академические должности.

Компьютер играл две роли в новой науке, становлению которой помог Мандельброт. Во-первых, фрактальные объекты, как мы видели, могут генерироваться путем применения простого правила к самому себе, что идеально подходит для автоматической деятельности компьютера (или матери-природы). Во-вторых, в процессе генерирования интуитивных образов происходит постоянная притирка между математиком и создаваемыми объектами.

Посмотрим теперь, какое отношение все это имеет к случайности. Если быть точным, карьера Мандельброта началась именно с вероятности.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*