Газета Троицкий Вариант - Газета Троицкий Вариант # 51
Что происходит, когда электрон с энергией, равной энергии Ферми, подлетает к магнитной примеси? Допустим, у него спин направлен вверх, а у примеси — вниз. В результате s-d обменного взаимодействия оба спина перевернулись (при сохранении, понятно, полного спина). Но изменение состояния примеси в силу катастрофы ортогональности означает полную перестройку состояния всей остальной многоэлектронной системы! Это значит, что, несмотря на то, что электроны считаются невзаимодействующими, задача существенно многочастичная. Более того, она существенно затрагивает все электроны. Число Авогадро электронов и все важны. И как такое решать?
Если задача многочастичная и не решается точно, в современной теорфизике есть в общем только две стратегии: среднее поле и ренорм-группа (группа перенормировок — в действительности полугруппа, обратные операции обычно не определены). Среднее поле — это когда эффективное число степеней свободы, реально важных для поведения системы, конечно. Здесь не тот случай. Просто выбросить бесконечно много степеней свободы не удается, они все важны. Но, как понял Андерсон (с соавторами), можно рассмотреть последовательность выбрасываний части степеней свободы. Эта последовательность обладает полугрупповыми свойствами, и можно сказать (они смогли это только качественно), к какому состоянию мы придем после бесконечного числа преобразований. В контексте проблемы Кондо оказалось, что магнитная примесь становится немагнитной: её спин в точности компенсируется «шубой» налипших (вспомним о сул-абрикосовском резонансе!) электронов. Шел 1970 год.
Еще через четыре года Кеннет Вильсон сделал из ренормгруп-пы количественный метод и нашел «численно точное» решение проблемы Кондо. Это было одно из первых применений «по делу» компьютеров в теорфизике. В этом смысле успех работы Вильсона имел колоссальные последствия. В параллель Вильсон применил похожую программу к теории «критического поведения», решив одну из самых сложных и самых важных проблем статистической физики, но это другая история. Я хочу подчеркнуть просто, что ноги тут проросли из малосущественной, на первый взгляд, особенности сопротивления некоторых металлов за счет «грязи».
В 1980 г. Павел Вигман в СССР и Натан Андрей в США обнаружили, что проблема Кондо (её некий упрощенный вариант, причем упрощения не портят физику задачи) является точно решаемой. То, что они сделали, было модификацией способа, которым Ханс Бете нашел в 1930-х годах точное решение для задачи об одномерной цепочке взаимодействующих спинов (это называется «анзац Бете»). Надо сказать, однако, что во многих случаях (например, когда нас интересуют спектральные характеристики) факт существования точного решения не слишком помогает, и практически удобнее все равно использовать численные подходы в духе Вильсона. Для термодинамических свойств существование точного решения просто закрывает проблему, во всяком случае если речь идет об одиночной магнитной примеси.
Тем временем у проблемы Кон-до обнаружились три новые области приложений, гораздо более важные, чем исходная задача о сопротивлении металлов с магнитными примесями.
Во-первых, в 1980-е годы были открыты и сразу стали чрезвычайно популярными так называемые «системы с тяжелыми фермионами». Дело тут вот в чем. Подавляющее большинство свойств металла определяется не всеми электронами, а только теми, энергия которыз близка к энергии Ферми. В частности, очень важна их эффективная масса, которая отличается от массы свободных электронов: во-первых, из-за воздействия кристаллического потенциала, а во-вторых, из-за эффектов взаимодействия с другими электронами и с фононами — электрон как бы «одевается» шубой из других электронов и из атомных смещений. Как правило, изменение эффективной массы по этим причинам — разы. В системах с тяжелыми фермионами (обычно это соединения, содержащие церий, уран, реже — иттербий или плутоний) перенормировка эффективной массы достигает значений порядка нескольких тысяч. Общепринятая интерпретация — это «решетки Кондо», где электроны утяжеляются за счет прилипания к магнитным моментам атомов церия или урана.
Во-вторых, люди стали интересоваться (сначала теоретически, а затем и экспериментально) «квантовыми точками». По сути это гигантские искусственные атомы — кусочки полупроводника (на-норазмеров), в которых энергетический спектр электронов дискретен. Если к ним подсоединить контакты, то электроны в контактах играют роль электронов проводимости в металлах, а сама квантовая точка — роль гигантской магнитной примеси. При протекании электрического тока через квантовую точку «сул-абрикосовские резонансы» прекрасно видны. Квантовые точки — основные объекты нанотехнологий (нанотехнологии действительно существуют, невзирая на всякие произносимые вокруг этого слова глупости), а эффект Кондо — одно из ключевых явлений, определяющих работу квантовых точек.
В-третьих, широкое распространение получила (начиная с 1990-х) сканирующая туннельная микроскопия (СТМ) — экспериментальная техника, позволяющая прощупывать, с атомным разрешением, локальную электронную структуру поверхности металлов и полупроводников. Если до этого о существовании сул-абрикосовского резонанса можно было судить по косвенным признакам, то в СТМ его просто видно. Люди делают очень красивые вещи. Например, можно выложить из атомов эллипс и поместить в один из его фокусов магнитный атом (скажем, кобальт). Поднеся СТМ tip к этому атому, можно увидеть резонанс. Такой же резонанс можно увидеть, поднеся тип к другому (пустому) фокусу эллипса, — одно из самых элегантных доказательств, что электрон есть волна, какие я знаю. Можно выкладывать кластеры из магнитных атомов и смотреть, что происходит с эффектом Кондо, когда эти атомы взаимодействуют. Есть интересные геометрические эффекты — скажем, сигнал существенно зависит от того, равносторонний треугольник из атомов выложен или всего лишь равнобедренный.
И последнее. Спин как таковой не очень важен для эффекта Кондо — важно наличие внутренней (квантовой) степени свободы у примеси, которая может изменяться при рассеянии электрона. Например, это может быть атом с двумя положениями равновесия — справа и слева. Это может быть орбитальный момент — ориентация «лепесточков» распределения электронной плотности в пространстве. Важно, чтобы разные квантовые состояния примеси были вырождены, т.е. имели бы одинаковую энергию. Если их раздвинуть (в случае магнитных примесей это можно сделать, прикладывая внешнее магнитное поле), эффект Кондо разрушается. В отсутствие магнитного поля вырождение по спину гарантировано «теоремой Крамерса» — следствием инвариантности квантовой механики относительно обращения времени.
В других случаях никаких гарантий нет, и людям пришлось попотеть, чтобы сообразить, в каком случае будет возможен «орбитальный эффект Кондо». Мне посчастливилось принять участие в совместной с экспериментаторами работе, которая, по-видимому, впервые его на самом деле обнаружила (восемь лет назад) — на поверхности хрома. Потом он был найден в других системах, таких, как знаменитые сейчас «углеродные нанотрубки». Одна из моих самых последних работ -про орбитальный эффект Кондо для примесей на поверхности графена. Так что эффект Кондо остается в центре внимания теоретиков и экспериментаторов, неизменно оказываясь имеющим отношение чуть ли не ко всему новому и важному, что случается в нашей науке.
Cуперпланетарий за 101-м километром
Сергей Попов
Так получилось, что первый по-настоящему современный планетарий в России появился в Калуге. Причем аппаратура не стоит мертвым грузом — на ней активно работают, под нее разрабатывают новые программы. О том, что и как можно и нужно делать с таким оборудованием, Сергей Попов беседует с командой планетария. Отвечают: зав. планетарием Ирина Евстигнеева, главный специалист планетария Дмитрий Алёшин, лектор Дмитрий Фетисов и инженер Антон Зарубин.
На фото (слева направо): Ирина Евстигнеева, Дмитрий Фетисов, Антон Зарубин, Дмитрий Алешин, Тамара Петракова
Планетарий в Калуге находится в Музее истории космонавтики. В чем плюсы и минусы такого симбиоза?
— То, что планетарий является одним из отделов Музея истории космонавтики им. К.Э. Циолковского, дает нам одни плюсы. Сам музей находится в культовом месте Калуги — в прекрасном парке, также названном в честь теоретика и основоположника космонавтики. И это притягивает к себе гостей и жителей города. Если экспозиция музея рассказывает о достижениях советской и российской космонавтики, то планетарий дополняет полученные сведения астрономическими знаниями. Новое современное оборудование позволяет отправиться в виртуальное космическое путешествие.