Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики с таблицей
Второе возраженіе ученыхъ касается того, что истиннымъ посредникомъ въ переносѣ индусскихъ цифръ въ Европу можно бы считать греческаго ученаго Пиѳагора, жившаго за 500 лѣтъ до Р. X. Въ такомъ случаѣ изобрѣтеніе цифръ отодвигается очеиь далеко. И это предположеніе опять можно допустить, потому что есть преданіе, что Пиѳагоръ много путешествовалъ, заходилъ въ далекіе края Азіи и вывезъ оттуда немало цѣнныхъ научныхъ изобрѣтеній. Но съ другой стороны, гораздо лучше дать вѣру иному предположенію, именно, что цифры индусовъ заимствовалъ не Пиѳагоръ, а его позднѣйшiе ученики, такъ наз. новопиѳагорейцы, жившіе въ Александріи, въ Египтѣ, во II–III ст. по Р. X. Они согласно этому предположенію сообщили цифры арабамъ, властителямъ сѣвернаго берега Африки и Испаніи, — маврамъ, а отъ арабовъ могли заимствовать испанцы и итальянцы.
Послѣдняя догадка, касающаяся нашихъ цифръ и, надо сказать, очень неосновательная, хотя и распространенная, заключается въ слѣдующемъ.
Будто бы каждая цифра образовалась изъ столькихъ точекъ или изъ столькихъ черточекъ, сколько въ этомъ числѣ единицъ. Если такъ, то цифра 4 состоитъ изъ Ч,
Но этого никакъ не можетъ быть, потому что это чрезвычайная натяжка и одна только игра остроумія. Такимъ путемъ можно всякую цифру привести къ столькимъ черточкамъ или точкамъ, къ сколькимъ угодно.
Конечно, единица подходитъ подъ эту гипотезу, и римскія цифры I, II, III, ІІІІ совершенно соотвѣтствуютъ ей, но съ индусскими цифрами ничего не сдѣлать. Лучшимъ же доказательствомъ несообразности является историческое развитіе цифръ, при которомъ онѣ много, много разъ мѣняли свою форму, дѣлались неузнаваемыми, походили одна на другую, и только точное изслѣдованіе историковъ могло разобраться и доказать, какъ изъ одной первоначальной формы вылилась другая окончательная, путемъ многихъ и долгихъ преобразованій. Да и странно было бы думать, что изобрѣтатели цифръ такіе глубокіе мудрецы, что вложили въ каждую цифру таинственный символъ и образовали цифры изъ соотвѣтствующаго числа черточекъ и точекъ.
Какъ сказано уже нами выше, цифры индусовъ были принесены въ Европу въ IX в. по Р. X., но до XIII в. онѣ распространялись очень слабо.
Причиной этого является недовѣріе, съ которымъ ученые среднихъ вѣковъ встрѣтили новинку, хотя бы и полезную. Средневѣковая школьная ученость (схоластика), правда, не гнушалась свѣтскими науками, но въ то же время она слишкомъ высоко ставила латинскій языкъ и римскую цивилизацію.
Западная Европа явилась преемницей и носительнщей научныхъ идей древняго Рима, поэтому-то такъ натурально вышло, что средневѣковая ариѳметика пользовалась исключительно римскимъ абакомъ и римскими цифрами; хотя едва ли римляне оставили другое болѣе неудачное и несовершенное наслѣдіе, чѣмъ ихъ система ариѳметики. Во всякомъ случаѣ преданіе, инерція превозмогли все, и долго, долго не рѣшались ученые среднихъ вѣковъ порвать связь съ абацистами, т.-е. послѣдователями римской ариѳметики, и превратиться въ «алгоритмиковъ», поклонниковъ учености арабской. Несмѣлыми шагами и тайкомъ, боясь навлечь на себя страшное обвиненіе въ еретичествѣ, пробирались сильные умомъ и волею ученые монахи въ Испанію, чтобы тамъ, въ центрахъ мавританской учености, въ Барселонѣ и Толедо, напитаться открытіями свѣжей и новой, чуждой имъ, образованности. Такъ сдѣлалъ Гербертъ, свѣтлый умъ своего времени, достигшій папскаго престола подъ именемъ Сильвестра II, (┼ 1003). Крестовые походы, съ ихъ массовымъ передвиженіемъ цѣлыхъ народовъ изъ странъ Европы въ государства Азіи, много содѣйствовали усвоенію науки греческой, арабской, персидской и индусской. Можно сказать, что ариѳметика едва ли въ такой степени обязана своимъ развитіемъ другому историческому движенію, въ какой она обязана Крестовымъ походамъ. И замѣчательно, что итальянцы, эти посредники въ сношеніяхъ Европы съ Азіей, особенно чувствовавшіе вліяніе Крестовыхъ походовъ, такъ какъ чрезъ нихъ лилась волна народа въ Азію, явились въ то же время и лучшими математиками. Индусы дали зерно настоящей ариѳметики, а итальянцы его выростили.
По роду своихъ занятій прикосновенные къ морской торговлѣ (недаромъ Христофоръ Колумбъ былъ родомъ итальянецъ), они особенно нуждались въ ариѳметикѣ для своихъ коммерческихъ вычисленiй, примѣняли ее въ банкахъ, конторамъ и т. д. и увѣковѣчили свое имя въ терминѣ «итальянская бухгалтерія». Индусы любили ариѳметику безкорыстно, какъ искусство, и до того ею увлекались, что даже устраивали цѣлые турниры и состязанія въ рѣшеніи ариѳметическихъ задачъ, итальянцы же приспособили ее прежде всего для цѣлей узкожитейскихъ.
Еще нѣсколько словъ объ индусахъ: имъ мы такъ обязаны усовершенствованіемъ ариѳметики. Это былъ народъ высококультурный, склонный къ отвлеченному мышленію. Едва ли какой-нибудь другой народъ на цѣломъ свѣтѣ любилъ настолько жить въ мірѣ идей, какъ это видимъ у индусовъ. Ихъ чистые созерцатели «факиры» пользуются всемірной извѣстноетью. Обѣ самыхъ распространенныхъ религіи Азіи, буддизмъ и браманизмъ, получили свое начало въ Индіи. Согласно съ этимъ, математика отличалась у индусовъ идейнымъ, отвлеченнымъ характеромъ и носила алгебраичеекую окраску, въ противоположность грекамъ, поклонникамъ природы и наглядности, которые болѣе любили устремляться на геометрическія построенія. Въ полетѣ своей математической фантазіи индусы явились изобрѣтателями даже не одной, а многихъ ариѳметическихъ системъ. Такъ, напр., индусъ Аріабгатта, ученый V в. по Р. X., бралъ 25 согласныхъ буквъ и ими выражалъ всѣ числа, начиная съ единицы и оканчивая 25-ю, особыми же буквами обозначалъ онъ и полные десятки до 100; а чтобы обозначить сотни, тысячи и т. д., онъ къ предыдущимъ знакамъ придавалъ гласныя буквы, при чемъ особая гласная обозначала сотни, особая тысячи и т. д. Наиримѣръ, «д» значитъ три, «да»—300, «ди»=30 000, «де» 30 000 000 000. Математики Южной Индіи для каждаго изъ однозначныхъ чиселъ имѣли по нѣскольку особыхъ значковъ, — буквъ, также имѣлось нѣсколько особыхъ знаковъ въ видѣ буквъ и для нуля. И вотъ, когда имъ приходилось обозначать разряды какого-нибудь длиннаго числа, она старались вмѣсто цифръ подставить буквы такъ, чтобы изъ нихъ составилось какое-нибудь слово, имѣющее смыслъ. Мало того, когда имъ приходилѳсь запоминать не одно число, а нѣсколько, то они рядъ чиселъ замѣняли цѣлой фразой, которая, опять-таки, имѣла смыслъ. И наконецъ, что всего удивительнѣе, при длинномъ рядѣ чиселъ, когда изъ нихъ составлялось нѣсколько фразъ, индусы ухитрялись сочинять цѣлые стихи и такимъ образомъ запоминать длинныя таблицы; для этого, конечно, нужна большая сноровка и многолѣтнія упражненія. И въ наше время среди индусовъ встрѣчаются такіе виртуозы, что въ умѣ совершаютъ головоломнѣйшія вычисленія, не прибѣгая къ помощи цифръ. Главный секретъ успѣха заключается въ этомъ случаѣ въ томъ, что они при устномъ счетѣ легко запоминаютъ всѣ промежуточные результаты, не теряютъ ихъ и не сбиваются, какъ это непремѣнно случилось бы съ нами; кромѣ того, конечно, помогаетъ имъ и привычка къ искусственнымъ и сокращеннымъ пріемамъ вычисленія, когда возможно столько упрощеній.
Распространеніе индусскихъ цифръ въ Россіи
Какія были цифры у нашихъ предковъ до введенія христіанства? Вѣрнѣе всего никакихъ.
Для своихъ небольшихъ разсчетовъ, надо полагать, они пользовались или пальцами, или нарѣзками на палочкахъ, иначе сказать бирками, которыми и сейчасъ пользуется темное крестьянство. Знакомство съ греками, введеніе христіанства и переводъ священныхъ книгъ на славянскій языкъ привели къ тому, что въ Россіи появилась своя славянская система цифръ, какъ простая копія и сколокъ греческой системы. Нерадостна и незавидна была участь ариѳметики въ Россіи. Нужды въ ней никакой особой не чувствовалось, по отсутствію образованности и торговли, и примѣнять ее необходимо было развѣ для вычисленія пасхаліи, т.-е. для опредѣленія дня Пасхи и другихъ переходящихъ праздниковъ. Наоборотъ, надо сказать, на ариѳметику смотрѣли косо, неласково и съ подозрѣніемъ; она была на замѣчаніи вмѣстѣ съ «Остронумѣей», ежеесть «звѣздочетье», и «волхвованіемъ». По мнѣнію проф. Бобынина, появленіе въ Россіи первыхъ ариѳметическихъ рукописей должно быть отнесено къ началу XII вѣка. Среди нихъ самая извѣстная: «Кирика діакона и доместика Новгородскаго Антоніева монастыря ученіе, имже вѣдати человѣку числа всѣхъ лѣтъ». Подлинники старинныхъ рукописей, къ большому сожалѣнію для науки, утерялись постепенно въ теченіе столѣтій, а также не перестаютъ утериваться и въ наши дни. Такъ, во время пожара Москвы въ 1812 году погибла древнѣйшая ариѳметика (XVI в.). «Сія книга рекома по-гречески Ариѳметика, а по-нѣмецки Алгоризма, а по-русски Цифирная Счетная мудрость». Самою замѣчательною изъ сохранив-шихся рукописей Бобынинъ признаетъ ариѳметику XVII в. съ такимъ характернымъ предисловіемъ: