Александр Марков - Рождение сложности: Эволюционная биология сегодня
После того как на матрице гена DSCAM синтезируется его РНК-копия (мРНК), она подвергается особой процедуре редактирования — альтернативному сплайсингу (см. врезку).
Альтернативный сплайсинг. Как известно, почти все гены высших организмов состоят из участков, кодирующих белок (экзонов), и вставленных между ними некодирующих фрагментов (интронов). Есть мнение, что некоторые интроны являются потомками мобильных генетических элементов, бурно размножившихся в геноме древнейших эукариот (см. главу "Великий симбиоз"). В ходе прочтения гена (транскрипции) сначала синтезируется "незрелая" матричная РНК (мРНК), представляющая собой полную копию всего гена, включая интроны. Затем интроны один за другим "вырезаются" из молекулы РНК, а экзоны соединяются друг с другом. Это и называется сплайсингом. Обычно существует несколько альтернативных вариантов сплайсинга для одной и той же мРНК. Дело в том, что часть экзонов может быть вырезана вместе с прилегающими к ним интронами. В результате из одной и той же "незрелой" мРНК, содержащей, например, 7 экзонов (1, 2,3,4, 5, 6,7) могут получиться разные "зрелые" мРНК: 12357,12467, 2345 и т. д. Экзоны могут вырезаться из молекулы РНК, но не могут меняться местами. Разные мРНК станут затем матрицами для синтеза разных белков. Таким образом, благодаря механизму альтернативного сплайсинга один и тот же ген может кодировать несколько разных белков. То, какой именно белок будет производиться данным геном в каждой конкретной ситуации, зависит от сложных регуляторных систем, о которых пока еще очень мало известно.
Между прочим, тот факт, что благодаря альтернативному сплайсингу один ген может кодировать более одного белка, является явным нарушением принципа "один ген — один белок" (или "один ген — один фермент"), который был сформулирован еще в 40-е годы XX века. Данный принцип сыграл огромную положительную роль в становлении современной молекулярной биологии. На тот момент это было величайшим достижением — догадаться, что загадочные гены, молекулярная природа которых еще не была расшифрована, занимаются не чем-нибудь, а именно кодированием белков, причем каждому белку соответствует свой собственный ген. Но сегодня этот принцип устарел, как и почти все "классические догмы" образца середины прошлого века. Вот вам и еще один пример лопнувшей "абсолютной истины"!
Уникальной особенностью гена DSCAM, содержащего 21 экзон, является то, что три из них представлены не в единственном экземпляре, а в виде кассет из множества немного различающихся копий. У малярийного комара, на котором проводилось данное исследование, экзон № 4 представлен в 14 экземплярах, экзон № 6 — в 30, экзон № 10 — в 38. В ходе сплайсинга сохраняется только один вариант каждого из этих экзонов. Таким образом, за счет альтернативного сплайсинга на основе единственного гена DSCAM может быть синтезировано 14 х 30 х 38 = 15 960 разных рецепторных белков. У мушки дрозофилы число вариантов еще больше: 38 016.
Такая структура гена DSCAM до боли напоминает те кассеты заготовок, из которых в лимфоцитах млекопитающих конструируются гены антител. Поэтому мысль об участии DSCAM в иммунной защите, по правде сказать, напрашивалась давно, но доказать это удалось лишь недавно, в 2006 году. Ученые обнаружили, что в присутствии разных бактерий иммунные клетки производят разные наборы сплайс-вариантов белка DSCAM. Например, в ответ на заражение кишечной палочкой резко увеличивается частота использования 8-го варианта 4-го экзона, тогда как стафилококк стимулирует синтез белков DSCAM с использованием 1-го варианта того же экзона.
Искусственное "выключение" гена DSCAM приводит к резкому снижению способности комара сопротивляться инфекциям; кроме того, в его гемолимфе (аналог крови у насекомых) начинают бурно размножаться бактерии, в норме присутствующие там в небольших количествах. Это доказывает непосредственное участие DSCAM в иммунной защите.
Строение гена DSCAM малярийного комара. Вертикальными отрезками показаны экзоны. Иммуноглобулиновые экзоны 4, 6 и 10 представлены кассетами из 14, 30 и 38 альтернативных вариантов. Зрелая РНК после сплайсинга будет содержать лишь по одному варианту каждого из этих трех экзонов.
Ученым удалось показать, что отключение тех сплайс-вариантов белка DSCAM, которые синтезируются в присутствии кишечной палочки, лишает комара способности бороться именно с кишечной палочкой, но не со стафилококком, и наоборот. Выяснилось также, что сплайс-варианты DSCAM, синтезируемые в ответ на заражение той или иной бактерией, лучше других "прилипают" именно к этой бактерии.
Изменения в спектре синтезируемых сплайс-вариантов DSCAM, спровоцированные контактом с бактериями, сохраняются в течение как минимум 18 часов после того, как контакт прекратился (что происходит потом, ученые просто не проверяли). Это очень похоже на явление приобретенного иммунитета!
Таким образом, различные сплайс-варианты белка DSCAM в известной мере аналогичны антителам позвоночных (хотя антитела, конечно, более избирательны и эффективны). Образование разнообразных сплайс-вариантов DSCAM осуществляется на основе того же комбинаторного принципа, что и образование антител у позвоночных. В обоих случаях используются случайный выбор и комбинирование отдельных фрагментов гена, каждый из которых представлен в геноме в виде нескольких альтернативных вариантов. Только у позвоночных это "перекраивание" генетической информации осуществляется на уровне ДНК, а у насекомых — на уровне РНК.
Это исследование, на мой взгляд, представляет собой крупный прорыв не только в изучении иммунной системы беспозвоночных, но и в понимании общих принципов иммунитета в целом. Можно ожидать, что дальнейшие исследования приведут к открытию новых черт сходства между иммунными системами далеких друг от друга групп организмов.
Каждая нервная клетка имеет десятки и сотни отростков, которые в ходе развития организма соединяются в строго определенном порядке. Как отростки нейронов находят друг друга и что позволяет им не ошибиться? Оказалось, что важную роль в этом играет иммунологический механизм различения "своих" и "чужих*.
За рамками исследования осталось множество важных вопросов. Например, осталось неясным, каким образом осуществляется регуляция сплайсинга. Откуда комар "знает", какие варианты белка DSCAM нужно синтезировать для борьбы с кишечной палочкой, а какие — для защиты от стафилококка? В любом случае результат удивительный: целая иммунная система — в одном-единственном белке!
Второе недавнее открытие, связанное с белком DSCAM, позволило понять, какую роль играет это биохимическое чудо в развитии нервной системы.
До сих пор было известно только то, что у насекомых с мутациями в гене DSCAM нервная система развивается неправильно. Механизм участия DSCAM в индивидуальном развитии был неясен, хотя "общую идею" нетрудно было угадать. Чтобы из делящихся клеток зародыша, которые все имеют одну и ту же заложенную в них "программу поведения" (геном), сформировалась не аморфная клеточная масса, а сложный организм, эти клетки должны знать, в какую сторону им расти или переползать, к кому приклеиваться, а от кого, напротив, отделяться. Для этого им нужно как-то узнавать друг друга, понимать, кто есть кто в их окружении. Такое взаимное узнавание клеток особенно важно в ходе развития нервной системы, чтобы отростки нейронов соединялись друг с другом правильным образом и формировали "правильные" нервные контуры и сети.
Что касается белков иммуноглобулинового надсемейства, то они как раз и специализируются на выполнении задач такого рода, то есть на персональной идентификации и различении "своих" и "чужих". Поэтому можно было предвидеть, что для этих белков найдется работа не только в иммунной системе, но и в других ситуациях, когда нужно разбираться, кто есть кто в клеточном или социальном окружении (О "социальном окружении" я упомянул не случайно. Оказывается, позвоночные животные (а возможно, и не только они) широко используют иммуноглобулиновые белки для персональной идентификации. Например, белки так называемого "главного комплекса гистосовместимости" составляют важнейшую часть индивидуального запаха и, в частности, позволяют животным отличать родню от чужаков. Даже люди не совсем утратили эту способность. Подробности см. по адресу: http://evolbiol.ru/mate_recognition.htm). Однако, повторю, до недавнего времени никто не знал, каким именно способом белок DSCAM реализует эту функцию в ходе развития нервной системы.
В 2004 году у белка DSCAM было обнаружено очередное поразительное свойство (Wojtowicz W. М. et al. Alternative splicing of Drosophila DSCAM generates axon guidance receptors that exhibit isoform-specific homophilic binding // Cell. 2004. V 118. P. 619-633.). Оказалось, что каждый сплайс-вариант этого белка обладает способностью к так называемому "гомофильному связыванию". Это значит, что молекула данного сплайс-варианта "узнает" другую такую же молекулу и прочно связывается с ней. При этом она никогда не связывается с другими сплайс-вариантами того же белка. Совершеннейшая фантастика, если подумать! Всем известно, что молекулы ДНК и РНК легко "узнают" свои собственные копии и склеиваются с ними на основе принципа комплементарности. Но чтобы подобные свойства обнаружились у белков — в это даже поверить трудно. Тем не менее данный факт подтвержден весьма тщательными экспериментами, проверены сотни сплайс-вариантов. Механизм "гомофильного связывания" активно исследуется, но пока еще до конца не расшифрован.