KnigaRead.com/

Генри Смит - Атомная энергия для военных целей

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Генри Смит, "Атомная энергия для военных целей" бесплатно, без регистрации.
Перейти на страницу:

1.46. В ядерной физике принято считать, что диаметры сталкивающихся частиц пренебрежимо малы. Поэтому научное определение поперечного сечения для любого ядерного процесса выражается так:

число происходящих процессов / число первоначальных частиц = (число ядер в мишени на см2) × (поперечное сечение ядра в см2),

Следует заметить, что это определение дано для поперечного сечения на ядро. Поперечные сечения могут быть вычислены для любого процесса, например, для захвата, рассеяния, вырывания нейтронов и т. д. Во многих случаях число частиц, испускаемых или рассеиваемых в ядерных процессах, не измеряется непосредственно; измеряют только ослабление параллельного пучка первоначальных частиц, вызванное помещением на его пути определенного вещества известной толщины. Поперечное сечение, полученное таким путем, называется полным поперечным сечением и обозначается буквой σ.

1.47. Как указывалось в параграфе 1.11, диаметр ядра имеет порядок 10-12 см. Мы можем поэтому ожидать, что для ядерных реакций поперечные сечения будут порядка πd2/4 или, грубо 10-24 см2, и эта величина обычно служит единицей для их выражения. Фактически же наблюдаемые поперечные сечения меняются в очень широких пределах. Так, для медленных нейтронов в реакциях (n, γ), поперечное сечение в некоторых случаях достигает величины 100010-24 см2 у а для превращений, происходящих в результате поглощения γ-лучей, поперечные сечения имеют порядок 1/100010-24 см2.

ВОЗМОЖНОСТЬ ИСПОЛЬЗОВАНИЯ АТОМНОЙ ЭНЕРГИИ В 1939 г.

НЕБОЛЬШОЙ МАСШТАБ ЭКСПЕРИМЕНТОВ

1.48. Мы говорили свободно об эквивалентности массы и энергии и о ядерных реакциях, таких, например, как реакция действия протонов на литий, когда высвобождается энергия в сравнительно больших количествах. Теперь спросим себя, почему атомные силовые установки не возникли во всем мире в тридцатых годах? В конце концов, коль скоро мы можем получить 2,7610-8 эрг из атома лития, разрушенного протоном, мы могли бы ожидать получения, примерно, полмиллиона киловатт-часов, комбинируя один грамм водорода с семью граммами лития. Это выглядит заманчивее, чем сжигание угля. Трудности заключаются здесь в получении быстрых протонов и в управлении освобождаемой энергией. Все эксперименты, о которых мы говорили, были проделаны с весьма малыми количествами веществ, которых, конечно, было достаточно много по количеству атомов, но бесконечно мало в обычных единицах массы не тонны или граммы, а миллионные доли грамма. Величина энергии, требовавшейся для выполнения эксперимента, была всегда значительно больше энергии, освобождаемой в процессе ядерной реакции.

1.49. Нейтроны весьма действенны для осуществления ядерного распада. Почему они не применялись? Если их первоначальным источником был пучок ионов, обстреливающий мишень, то имели место ограничения, разобранные в предыдущем параграфе. Если же применялся радиево-бериллиевый источник, то трудность состояла в том, что радий встречается в природе в очень малых количествах.

НЕОБХОДИМОСТЬ ЦЕПНОЙ РЕАКЦИИ

1.50. Обычные наши источники энергии, кроме солнца и воды, суть химические реакции сжигание угля и нефти. Эти реакции освобождают энергию в результате перегруппировок в внешних электронных оболочках атомов тот же процесс, который дает энергию нашему телу. Горение есть самораспространяющийся процесс; так, если зажечь спичку, то выделившегося тепла хватит для воспламенения окружающего топлива, которое выделит еще тепло, зажигающее топливо дальше, и т. д. В описанных нами выше ядерных реакциях это, вообще говоря, не так: ни выделившейся энергии, ни вновь образовавшихся частиц не достаточно для поддержания реакции. Но мы можем представить себе ядерные реакции, сопровождающиеся испусканием частиц того же вида, что и частицы, вызвавшие эти реакции, и притом в количестве, достаточном для продолжения реакции в соседних ядрах. Такая саморазвивающаяся реакция называется «цепной реакцией», и такие условия должны быть достигнуты, если энергию ядерных реакций мы желаем применять в большом масштабе.

ПЕРИОД ТЕОРЕТИЧЕСКИХ ИССЛЕДОВАНИЙ

1.51. Хотя в тридцатых годах атомные силовые установки не были построены, было много открытий в области ядерной физики и достаточно много чисто теоретических работ. Г. Бете выдвинул теорию для объяснения образования теплоты солнца посредством цикла ядерных превращений, в которых участвуют углерод, водород, азот и кислород; этот цикл реакций в конечном счете при- водит к образованию гелия.

(Ряд постулированных реакций был такой:






Конечный результат превращение водорода в гелий и позитроны (обозначенные через 1e0) и выделение около тридцати миллионов электрон-вольт энергии.)

Теперь эта теория общепринята. Открытие нескольких ядерных реакций типа (n, 2n) (т. е. реакций, которые вызываются нейтронами и сами производят нейтроны) указывало на то, что при соответствующих условиях может начаться саморазвивающаяся цепная реакция. Много было разговоров об атомной энергии; некоторые рассуждения велись также и об атомных бомбах. Но последний важный шаг в этот подготовительный период был сделан лишь после четырех лет ошибок и исканий. Некоторые талантливые физики исследовали действие бомбардировки нейтронами ядер урана, самого сложного из всех известных элементов. Результаты были поразительны, но вызвали недоумение. История их постепенного истолкования представляет собой запутанный и сугубо специальный, но увлекательный рассказ о теории и эксперименте. Оставляя в стороне ранние несостоятельные объяснения, мы сразу перейдем к окончательному объяснению, которое, как это часто бывает, сравнительно просто.

ОТКРЫТИЕ ДЕЛЕНИЯ ЯДЕР УРАНА

1.52. Как уже упоминалось, нейтрон оказался частицей, наиболее пригодной для осуществления ядерных превращений. Особенно это относилось к элементам с самыми высокими атомными номерами и атомными весами; у этих элементов большой заряд ядра обусловливает значительные отталкивательные силы, действующие на дейтроны или протоны, но не действующие на незаряженные нейтроны. Результаты бомбардировки урана нейтронами оказались интересными и загадочными. Изученные впервые в 1934 г. Ферми и его сотрудниками, эти результаты были правильно объяснены лишь через несколько лет.

1.53. 16 января 1939 года Нильс Бор (Копенгаген, Дания) прибыл в США, чтобы провести несколько месяцев в Принстоне (Нью-Джерси); он с нетерпением ждал случая обсудить некоторые теоретические вопросы с А. Эйнштейном. (Четыре года спустя Бор вынужден был бежать из оккупированной нацистами Дании на маленьком пароходе). Как раз перед тем, как Бор покинул Данию, двое из его сотрудников О. Р. Фриш и Л. Мейтнер (оба эмигранты из Германии) поделились с ним своей догадкой о том, что поглощение нейтрона ядром урана иногда вызывает расщепление этого ядра на две приблизительно равные части, сопровождающееся освобождением колоссальных количеств энергии; этот процесс стал вскоре называться «делением» ядра. Поводом для этой гипотезы послужило важное открытие О. Гана и Ф. Штрасмана в Германии (опубликовано в первых числах января 1939 г. в журнале Naturwissenschaften), которые доказали, что при действии нейтронов на уран получается изотоп бария. Немедленно по приезде в Соединенные Штаты Бор сообщил эту мысль своему ученику Дж. А. Уилеру и другим в Принстоне, а от них эта новость постепенно стала известна физикам соседних городов, в частности Э. Ферми в Колумбийском университете. В результате бесед между Ферми, Дж. Р. Данингом и Дж. Б. Пеграмом, в Колумбии были предприняты поиски больших ионизационных импульсов, которых следовало ожидать от летящих осколков уранового ядра. 26 января 1939 г. в Вашингтоне состоялась конференция по теоретической физике, созванная Вашингтонским университетом и институтом Карнеги в Вашингтоне. Ферми покинул Нью-Йорк, чтобы принять участие в этой конференции, раньше, чем были проделаны в Колумбийском университете опыты по делению ядра.

На конференции Бор и Ферми обсуждали проблему деления, и, в частности, Ферми упомянул, что могут испускаться нейтроны. Хотя это было лишь догадкой, из нее с очевидностью вытекала возможность цепной реакции. По вопросу о делении в печати был опубликован ряд сенсационных статей. Прежде чем конференция в Вашингтоне закончилась, было предпринято несколько других экспериментов, чтобы подтвердить наличие деления ядер, и в четырех лабораториях (Колумбийский университет, Институт Карнеги в Вашингтоне, Университет Джона Гопкинса, Калифорнийский университет) это было экспериментально подтверждено, о чем сообщалось в Physical Review от 15 февраля 1939 г. К этому времени Бор узнал о том. что подобные же эксперименты были произведены в его лаборатории в Копенгагене около 15 января. (Письмо Фриша в Nature, от 16 января 1939 г., опубликованное в номере от 18 февраля). В Comptes Rendus (Париж) 30 января 1939 г. Ф. Жолио также опубликовал свои первые результаты.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*