KnigaRead.com/

Вокруг Света - Журнал "Вокруг Света" № 7 за 2006 год

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Вокруг Света, "Журнал "Вокруг Света" № 7 за 2006 год" бесплатно, без регистрации.
Перейти на страницу:

Красивейшая туманность Кошачий Глаз (NGC 6543), сфотографированная космическим телескопом «Хаббл». Это скопление пыли и газа находится на расстоянии 3 000 световых лет от Земли


Мертвое море

Наверное, нет в астрономии объектов красивее, чем так называемые планетарные туманности. Они похожи на тончайшее кружево, на отлетевшую «душу» сгоревшего солнца. Перламутр туманности медленно рассеивается, чтобы, возможно, когда-нибудь войти в состав новой звезды, а в центре брошенной жемчужиной остается мертвое солнце – белый карлик. Так заканчивается жизненный цикл не слишком тяжелых звезд.

Белые карлики были открыты еще в XIX веке. Однако объяснить их природу удалось, лишь используя физику XX. Они стали первыми известными макрообъектами, живущими по квантовым законам. Неудивительно, что создание теории белых карликов было отмечено Нобелевской премией.

Первым открытым карликом стал спутник ярчайшей на земном небе звезды Сириус из созвездия Большого Пса. В движении Сириуса были замечены странные отклонения. «Песья» звезда двигалась по небу «валкой походкой». Обычно звезды, да и вообще небесные тела, так себя не ведут: что-то должно было заставлять Сириус сбиваться с прямого пути. Стало очевидно, что у него есть невидимый массивный спутник. Невидимым, правда, он оставался недолго. В телескопы удалось рассмотреть слабую белую звездочку. Именно белый цвет этого источника стал причиной того, что все объекты этого типа теперь называют белыми карликами, невзирая на их цвет.

Как известно, цвет звезды напрямую связан с ее температурой. У белых карликов нет источников энергии: они светят только за счет запасенного тепла. По мере остывания их цвет изменяется от белого до красного. По прошествии достаточно большого времени получится почти черный карлик. «Почти» – потому что на самом деле по-настоящему черным реальный карлик вряд ли станет.

Процесс перетекания вещества с красного гиганта на белый карлик. Когда масса последнего превысит полторы массы Солнца, он свернется, превратившись в нейтронную звезду, и засияет на краткий миг, как целая галактика


Его температура даже за миллиарды лет не упадет ниже нескольких тысяч градусов, а ведь нашей Галактике всего 12 миллиардов лет. Кроме того, падение (аккреция) вещества из межзвездной среды на поверхность карлика приводит к его разогреву и поддержанию постоянной температуры. Наличие же у карлика водородной атмосферы может, при глубоком остывании, делать источник на вид менее красным, чем ему полагается быть в соответствии с его температурой и законом Планка. Это происходит из-за образования молекулярного водорода, поглощающего инфракрасное излучение.

Самый холодный из известных белых карликов имеет температуру около 3 000 К, то есть почти в два раза холоднее верхних слоев Солнца. Но надо помнить, что чем холоднее карлик, тем труднее его заметить. Поскольку белые карлики фактически являются «трупами» многочисленных маломассивных звезд, их в Галактике немало: в Млечном Пути – до 10% всех звезд. В окрестностях Солнца пространственная плотность белых карликов составляет примерно 0,005 на кубический парсек, что означает, что на расстоянии до 20 парсек (примерно 65 световых лет) от нас должно быть около 170 таких объектов, из которых более сотни нам уже известно. В пределах 13 парсек (почти точно) найдены все белые карлики. Если карлик входит в состав тесной двойной системы, то на него может перетекать вещество со звезды-соседки. В этом случае могут наблюдаться разные интересные типы источников. Самыми известными, вероятно, являются «новые» звезды, когда водород накапливается на поверхности белого карлика и там со временем происходит термоядерный взрыв. Светимость системы возрастает скачком, и появляется как бы новая звезда.

Если же белый карлик одинок, то он достаточно быстро становится слабым и тусклым объектом. Старые источники этого типа в десятки тысяч раз слабее Солнца, которое само по себе является заурядным желтым карликом. Тем не менее современные телескопы позволяют разглядеть белые карлики на большом расстоянии, даже если они уже успели изрядно остыть. Изучение подобных объектов дает много важной информации об истории нашей Галактики, особенно о раннем периоде. Их исследование позволяет определить возраст диска Галактики и различных скоплений, в которых наблюдаются белые карлики.

Схематическое изображение пульсара – быстро вращающейся нейтронной звезды. При наличии сильного магнитного поля такая звезда излучает мощные периодические радиоимпульсы

Восставшие из ада

После ярости взрыва сверхновой, когда, казалось бы, жизнь звезды завершена, часто остаются удивительные объекты – нейтронные звезды, которые изучаются уже 40 лет. Сверхсильные магнитные поля, сверхплотное вещество в недрах и сверхсильная гравитация на поверхности – вот их уникальные свойства. Первые открытые нейтронные звезды были радиопульсарами или рентгеновскими источниками в тесных двойных системах. И за открытие радиопульсаров, и за исследования первых рентгеновских источников были вручены Нобелевские премии. За изучение нейтронных звезд была присуждена еще и третья премия – Халсу и Тейлору за открытие и исследования первого двойного радиопульсара (системы из двух нейтронных звезд, идеальной лаборатории для проверки Общей теории относительности).

Радиоизлучение пульсаров связано с наличием сильного магнитного поля и очень быстрым вращением: шарик массой примерно с наше Солнце и диаметром несколько десятков километров успевает повернуться вокруг своей оси за сотые доли секунды. Вращение многих нейтронных звезд нельзя заметить глазом, поскольку они совершают полный оборот за время, меньшее, чем смена кадров в фильме.

Рентгеновское излучение нейтронной звезды возникает благодаря сильнейшей гравитации на ее поверхности. Камень, брошенный на такой объект, выделит больше энергии, чем ядерная бомба такой же массы. Если система двойная, то возможна ситуация, когда вещество начинает перетекать на нейтронную звезду со второго компонента, и мертвая нейтронная начинает активно излучать рентгеновские кванты.

Взрыв тяжелой сверхновой звезды сопровождается не только резким увеличением светимости, но и выбросом огромной массы газа в окружающее пространство

Однако не все такие звезды обладают быстрым вращением вкупе с сильным магнитным полем или входят в состав тесных двойных систем. За последние десять лет «коллекция» нейтронных звезд пополнилась новыми редкими экземплярами. Взять хотя бы источники, за которыми закрепилось название «Великолепная семерка».

Первый из семерки, знаменитый объект RX J18563754, является самой близкой к Земле молодой нейтронной звездой. Она была открыта 10 лет назад при наблюдениях на спутнике ROSAT области звездообразования. С помощью этого же спутника были открыты и остальные шесть.

Эти объекты светятся благодаря тому, что они пока относительно молоды – их возраст менее миллиона лет. Они еще не остыли после рождения. Кроме рентгеновского излучения от некоторых из них зарегистрировано и оптическое. Это слабые-слабые звездочки, едва различимые в самые мощные телескопы. Несмотря на то что известно всего семь таких звезд, можно сказать, что они являются едва ли не самыми типичными представителями нейтронных. Ведь если даже в такой близости от Солнца существуют такие молодые нейтронные звезды, то, видимо, они рождаются в нашей Галактике довольно часто. Просто более далекие или более старые объекты, подобные «Великолепной семерке», пока недоступны для наших инструментов, по крайней мере, их нелегко идентифицировать среди множества слабых источников.

Экзопланета в двойной системе

Планеты обнаружены около самых разных звезд. Есть среди них и такая, которая вращается вокруг звезды, чьим компаньоном по двойной системе является белый карлик. Несколько лет назад было доказано, что звезда Gl86 имеет планету. Кроме того, на небольшом расстоянии был обнаружен еще один объект, однако было неясно, связан ли он с Gl86 или нет. Астрономы смогли показать, что связан. Причем это не обычная звезда, а именно белый карлик. Таким образом, теперь известно о существовании экзопланет в двойных системах с белыми карликами. Такая планета – настоящий герой: она смогла образоваться и выжить в двойной системе, в которой одна из звезд сбросила свою оболочку.

Белый карлик устойчив, поскольку гравитация, стремящаяся его сжать, уравновешивается давлением вырожденного электронного газа. Однако если увеличивать массу карлика, то в конце концов он потеряет устойчивость и, вспыхнув на краткое время, станет нейтронной звездой. Как же можно увеличить массу белого карлика? Путем аккреции – если у карлика есть звезда-компаньон, то вещество с нее может начать перетекать на компактный объект. Другой вариант возможен при слиянии двойной системы, состоящей из двух белых карликов. Такие сверхновые типа Ia очень важны, так как они очень похожи друг на друга. Это позволяет использовать их в качестве так называемой «стандартной свечи». Наблюдая сверхновую этого типа в далекой галактике, можно с достаточной точностью определить расстояние до нее. Именно такие наблюдения позволили в 1998 году открыть ускорение расширения Вселенной. Таким образом, оказывается, что белые карлики сыграли важную роль в современной космологии. Планируется запуск специальных космических телескопов для поиска далеких сверхновых типа Ia.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*