KnigaRead.com/
KnigaRead.com » Документальные книги » Прочая документальная литература » Елена Трибис - Гипотезы и заблуждения, о которых должен знать современный человек

Елена Трибис - Гипотезы и заблуждения, о которых должен знать современный человек

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Елена Трибис, "Гипотезы и заблуждения, о которых должен знать современный человек" бесплатно, без регистрации.
Перейти на страницу:

«Камнем преткновения» этого постулата было само евклидово определение параллельности прямых, опиравшееся на равенство суммы двух односторонних углов, образованных пересечением двух параллельных прямых третьей, 180 градусам. Первая попытка придать 5-му постулату статус теоремы была предпринята греческим геометром Посидонием, предложившим считать параллельной прямой множество всех точек плоскости, находящихся на равном расстоянии от данной прямой. Однако доказать это утверждение было невозможно, и вместо теоремы получился новый постулат.

5-й постулат Евклида можно изобразить графически


Доказательства прочих древнегреческих математиков, как, впрочем, и средневековых (того же ибн Корра и О. Хайама), сводились в конечном итоге к появлению новых постулатов, доказываемых с учетом разного рода допущений.

Очень близко к нахождению доказательства 5-го постулата подошел французский математик А. Лежандр. Ему удалось доказать, что сумма углов в треугольнике не может быть больше или меньше числа π, а стало быть, она равна π. Опираясь на допущение, что данная прямая проходит через точку внутри острого угла, он доказывал единственность параллельной ей прямой, принципиально повторяя ошибку своих предшественников.

К началу XIX в. стали появляться идеи создания неевклидовой геометрии. Впервые описание принципиально новой, не зависящей от 5-го постулата геометрии привел в «Приложении» к книге отца венгерский военный инженер Я. Бойаи. Однако продолжать развитие своих идей Бойаи не стал, посчитав их изначально ошибочными. Выдающийся немецкий математик К. Гаусс также занимался исследованиями в области «новой» геометрии, однако фундаментальной системы ему создать не удалось.

Приоритет в создании неевклидовой геометрии принадлежит отечественному математику, адъюнкт-профессору Казанского университета Н. И. Лобачевскому. Впервые ему удалось описать свойства реального пространства, показав, что евклидова геометрия «работает» лишь в частном случае его системы.

Начав доказывать 5-ый постулат, он, как и сотни других геометров, не нашел решения. Нетрадиционное мышление подсказало ему другой путь — отказ от представления, что сумма углов в треугольнике всегда равна 180 градусам. Пойдя по пути доказательства от противного, он постепенно пришел к созданию новой геометрии, в которой 5-ый постулат принял более общее звучание. Отныне допускалось существование нескольких параллельных данной прямых, проходящих через точку вне данной прямой.

Создание новой геометрии, безусловно, не было одним из постоянно совершающихся человеческих открытый. Новый взгляд на пространство коренным образом изменил представления, остававшиеся незыблемыми на протяжении всей истории существования человечества. Если геометрия Евклида — это единственная осознаваемая геометрия, очевидная, рожденная самим характером нашего воззрения на мир в принципе, то учение Лобачевского о пространстве — это более высокий уровень познания действительности, абстрагированный от метода «могу понять только то, что могу измерить». К сожалению, идеи гениального ученого не были приняты и поняты современниками, ни один из его учеников не продолжил изучение неевклидовой геометрии.

Н. И. Лобачевский первым описал свойства реального пространства


Основу геометрии Лобачевского можно понять, рассматривая космическую бесконечность. Ведь действительно, разве можно представить себе, что бесконечная Вселенная — это лишь сумма прямолинейных пространств? Лишь необыкновенный дар научного предвидения позволил ученому абстрагироваться от окружающего нас мира и перенести геометрическую систему на уровень т. н. криволинейных пространств, создаваемых гравитационными полями галактик.

Новая геометрия позволяла описывать любые поверхности и сложные формы предметов. Если ранее геометры пытались свести все к «приблизительно правильному» кругу, цилиндру, пирамиде или их произвольному сочетанию, что в принципе было серьезной ошибкой, то теперь любой предмет можно было описать таким, какой он есть на самом деле.

Земля в реальности не является шаром. В действительности форма нашей планеты — это геоид, т. е. фигура, получаемая при очерчивании внешнего контура твердой оболочки планеты.

Вернемся к 5-му постулату. И в реальной жизни находятся аналоги вселенских криволинейных пространств, позволяющих представить наличие нескольких параллельных прямых. Речь идет об изогнутых поверхностях трех типов, выделенных итальянским геометром Е. Бельтрами и названных псевдосферами.

Независимо от Лобачевского немецкий математик Б. Риман пришел в 1854 г. к пониманию неабсолютности геометрии Евклида и показал путь к созданию бесконечного множества различных неевклидовых геометрий. По Риману, возможно существование трех основных типов пространств: положительной, нулевой и отрицательной кривизны.

Причудливые сосуды, всевозможные кувшины являются наглядными примерами псевдосфер


С позиций учения Римана, описывающего в основном пространства положительной кривизны, 5-ый постулат принимает противоположное звучание: через точку вне данной прямой нельзя провести ни одной прямой, параллельной данной.

Пространства нулевой кривизны, по Ф. Клейну, описываются параболической геометрией, ее частным случаем является евклидова геометрия; пространства отрицательной кривизны подчиняются гиперболической геометрии или геометрии Лобачевского, пространства же положительной кривизны, описанные Риманом, по Клейну, подчиняются эллиптической геометрии.

С созданием А. Эйнштейном теории относительности представления о криволинейных пространствах были дополнены данными новой физической теории, описывающей относительное пространство с позиции существования четырех меняющихся и взаимообусловленных измерений — массы, скорости, энергии и времени.

Однако если вернуться к человеческому уровню существования во вселенских пространствах, то нужно отметить, что в пределах земной орбиты отклонение суммы внутренних углов гигантского треугольника от 180 градусов будет составлять всего 4 миллионных секунды, что находится за гранью человеческого восприятия. А потому востребованной для человеческих нужд остается геометрия Евклида.

Наблюдения за космическими объектами позволяют лишь делать предположения о том, каковы геометрические свойства различных участков Вселенной. Возможно, когда-нибудь человечество сможет получить непосредственные экспериментальные данные, подтверждающие теории Лобачевского и Римана в галактическом масштабе. В целом же, интерпретации евклидова постулата в новых геометриях отражают многообразие криволинейных пространств этого мира.

Великая теорема Ферма

Среди всех загадок, какие только знала история, найдется не так много, пожалуй, тех, что напрямую связаны с математикой. Эта наука располагает массой подчас неразрешимых задач, сложный язык ее формул зачастую пугает. Исключение представляет лишь великая теорема Ферма, о которой многие наслышаны. Она предельно проста, доступна для понимания любого человека, включая такого, который совершенно не любит математику.

А главное, это единственная теорема, удостоенная чести быть положенной в основу сюжета фантастического рассказа. Среди множества произведений американского фантаста А. Порджесса рассказ «Саймон Флегг и дьявол» занимает особое место. На сегодняшний день это единственное литературное сочинение, прославляющее математику. Перед читателем раскрывается все величие и прекрасная в своей сложности гармония математической науки.

Плоды многотысячелетнего труда армии математиков оказываются настолько внушительными, что просто недоступны воображению обывателя. Человек, знакомясь с математикой, словно погружается в иную Вселенную, измеряемую неевклидовыми, начертательными, сферическими, аналитическими и прочими геометриями. Сюжет рассказа предельно прост. Вымышленный математик С. Флегг задает задачку дьяволу и требует ответ через сутки. Нетрудно догадаться, что задачкой была именно теорема, которую не решил ни один математик.

Выбор автора удачен. Нельзя в более подходящем свете представить математику, кроме как поведав о таинственной теореме Ферма. Ведь величайшие светила точных наук тщетно пытались доказать теорему на протяжении последних 350 лет! При этом были перепробованы все без исключения разделы математики. Не найдется такой области учения о числах и фигурах, которая не оказалась бы задействована в решении этой задачи.

Более того, попытки доказать теорему привели к созданию новых направлений внутри математики. Не получив ответа на вопрос, математики забрались в такие дебри бесконечного «космоса чисел», что вынуждены были создать новые математические учения. В числе последних теория идеальных чисел, рожденная уже в XX в. Любопытно, что создатель теоремы живший в первой половине XVII столетия, француз П. Ферма не принадлежал к числу профессиональных математиков, хотя с его мнением считались крупнейшие ученые того времени. С Ферма, состоявшим на государственной службе в министерстве, переписывались выдающиеся математики, многие консультировались у него. Ферма сделал немало замечательных открытий в области алгебры, многие из его теорем изучаются в программе средней школы, не говоря о вузовских учебных программах.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*