KnigaRead.com/
KnigaRead.com » Документальные книги » Прочая документальная литература » Александр Марков - Эволюция человека том 2 Обезьяны нейроны и душа 2011

Александр Марков - Эволюция человека том 2 Обезьяны нейроны и душа 2011

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Марков, "Эволюция человека том 2 Обезьяны нейроны и душа 2011" бесплатно, без регистрации.
Перейти на страницу:

Схема экспериментальной установки. Проголодавшегося рака выпускали в правую часть аквариума, после чего он шел влево, на запах пищи. Когда рак достигал первого фотодиода, на него начинала надвигаться тень. При помощи электродов регистрировали активность медиальных гигантских нейронов. По рисунку из Liden et al., 2010.


 Заметив приближающуюся тень, рак либо замирает, либо резко бьет хвостом и отпрыгивает далеко назад. Обе реакции — защитные. В природе движущаяся тень с большой вероятностью означает приближение хищника — например, крупной рыбы или птицы. В эксперименте использовали тень от пластиковой непрозрачной пластины, и раки никогда не игнорировали ее. В каждом опыте непременно наблюдалась одна из двух реакций — либо замирание, либо удар хвостом.

 Ранее было установлено, что удар хвостом происходит в результате возбуждения двух гигантских нейронов, расположенных в брюшной нервной цепочке и проходящих вдоль всего тела рака (medial giant interneurons, MG). Возбуждение этих нейронов регистрировалось при помощи двух электродов. Электрический импульс пробегает по гигантским нейронам примерно за одну миллисекунду до того, как начнут сокращаться мышцы брюшка. То есть фактически приборы регистрируют принятое раком решение ударить хвостом еще до самого удара. Что касается реакции замирания, то она провоцируется возбуждением одного-единственного нейрона; этот нейрон известен, но в данном эксперименте его активность не регистрировалась.

 Оказалось, что рак решает, как ему поступить — замереть или ударить хвостом, — в зависимости от скорости движения тени. Если тень надвигается медленно (1 м/с), то рак, скорее всего, прыгнет. При виде быстрой тени (4 м/с) — замрет. Эти скорости примерно соответствуют реальным скоростям движения хищных рыб.

 Смысл такого поведения довольно очевиден. Если хищник движется не очень быстро, есть шанс спастись от него бегством. Это надежнее, чем замирать и надеяться, что тебя не заметят. Но если враг мчится со скоростью 4 м/с, прыгать от него бесполезно — догонит. Остается замереть и положиться на удачу. Похожее поведение характерно для грызунов: они тоже чаще реагируют замиранием, а не бегством, на угрозу, от которой трудно или невозможно убежать.


Решение рака зависит от скорости движения тени. По горизонтальной оси — скорость тени (м/с), по вертикальной — процент принятых решений; серым цветом показаны замирания, черным — удары хвостом. По рисунку из Liden et al., 2010.


 От скорости тени зависело не только само решение, но и время, затраченное раком на его принятие. Те раки, которые в итоге выбрали прыжок, раздумывали дольше, если тень надвигалась не очень быстро. Между началом движения тени и возбуждением MG проходило около 80 мс при скорости тени 1 м/с и лишь около 65 мс при скорости 4 м/с. Впрочем, раки все равно не успевали отпрыгнуть до того, как тень их накроет: при максимальной скорости движения тени она настигала их за 44 мс.

 Могут ли раки, принимая решение, учитывать еще какие-то факторы, кроме скорости движения тени? Прыжок обходится раку довольно дорого: помимо того что на столь резкое движение тратится много сил, рак после прыжка оказывается дальше от своей цели — в данном случае от источника вкусного запаха, к которому он полз. Кроме того, после прыжка ему приходится дольше приходить в себя, прежде чем он сможет продолжить путь. Раки начинали снова ползти на запах в среднем через 11 с после реакции замирания и через 29 с после удара хвостом. На то, чтобы добраться до цели, в первом случае уходило в среднем 47 с (от начала эксперимента), а во втором — целых 140 с. В природе раки часто сталкиваются с дефицитом пищи и дерутся за нее друг с другом. Поэтому раку невыгодно шарахаться от каждой тени. Принимают ли раки в расчет это обстоятельство?

 Авторы провели еще одну серию экспериментов с переменной концентрацией пищевого запаха и со скоростью движения тени 1 и 2 м/с. Ученые предположили, что более сильный — а значит, более привлекательный — запах пищи, возможно, будет склонять раков к тому, чтобы реже прыгать и чаще замирать. Это предположение подтвердилось: концентрированный запах пищи достоверно снизил частоту прыжков, соответственно повысив частоту замираний. Особенно четко эта закономерность проявилась при скорости тени 2 м/с. При низкой скорости (1 м/с) эффект был сходный, но более слабый.

 Исследование показало, что процесс принятия решений у раков в общих чертах похож на таковой у млекопитающих. Раки интегрируют информацию, поступающую от разных органов чувств (в данном случае — от глаз и обонятельных рецепторов), "взвешивают" значимость этих сигналов и принимают решение на основе результатов взвешивания. Сам акт принятия решения состоит в том, что несколько ключевых нейронов, на которых сходятся окончания других нервных клеток, либо возбуждаются, либо нет.

 Разумеется, для того чтобы осуществлять подобные аналитические процедуры — и в результате совершать вполне осмысленные, адаптивные поступки, — вовсе не нужно обладать сознанием (в одной англоязычной научно-популярной книге - к сожалению, не могу вспомнить, в какой именно, - мне попалась очаровательная (и при этом абсолютно верная) фраза: "Чтобы учиться, не нужно обладать ни разумом, ни сознанием". По-моему, она подошла бы в качестве девиза многим образовательным учреждениям). Даже очень простые нейронные контуры могут справляться с такой работой, совершая ее автоматически, без всякого осознания или рефлексии, подобно интерактивной компьютерной программе. Эта простая мысль до сих пор кажется чуждой многим людям, что вообще-то немного странно в наш компьютерный век. Изученное в обсуждаемой работе поведение раков нетрудно запрограммировать. Наверняка можно сделать искусственного автоматического рака, который будет реагировать на тени и запахи совсем как живой. Подобные роботы уже существуют: например, удалось сделать механических тараканов, которых живые тараканы принимают за "своих" и даже считаются с их "мнением", когда нужно решить, в каком из нескольких укрытий лучше всем вместе спрятаться (тараканы — большие коллективисты) (Halloy et al., 2007).

 Вряд ли на раках можно изучать сложные мыслительные процессы, характерные для человека и других млекопитающих, но базовые нейрологические механизмы принятия решений, по-видимому, сходны у нас и у раков. Изучать их на раках гораздо проще, чем на обезьянах и крысах, что делает раков перспективными объектами нейробиологических исследований.

 Рассмотренный пример также помогает понять, почему результаты мыслительных процедур у людей и других животных часто бывают предельно дискретными (контрастными, категориальными) (соображения, изложенные в этом абзаце, автор позаимствовал у лингвиста С. А. Бурлак, которая высказала их на антропологическом семинаре в Московском Государственном Дарвиновском музее в конце 2010 года). Рак не может наполовину замереть, наполовину прыгнуть. Нужно выбрать одно из двух и затем уже действовать решительно, не оглядываясь на упущенные альтернативные возможности. Кроме того, как мы уже говорили, категоричность изначально заложена в саму структуру нейрона. Нейрон не может послать по аксону половину или семь восьмых потенциала действия. Все или ничего, ноль или единица, белое или черное. Надо ли удивляться, что люди так любят преувеличивать контрастность наблюдаемых различий между похожими объектами, что мы склонны искать (и, черт побери, находить!) четкие границы даже там, где их со всей очевидностью нет. Как, например, в эволюционном ряду, соединяющем нечеловеческих обезьян с человеком.

 "Нет, вы все-таки скажите нам точно, в какой момент обезьяна стала человеком!" — вот типичное требование, предъявляемое публикой ученым, когда речь заходит об антропогенезе. Не скажу. Зато вы можете спросить у речного рака, на какие категории делятся хищники. Он вам объяснит, что хищники делятся на две категории, которые невозможно спутать и между которыми вообще нет ничего общего. Есть медленные хищники — от них нужно прыгать. Есть быстрые хищники — от них не убежишь, нужно замирать. Вот и все. Переходных форм не существует. Для такой логики достаточно пары нейронов. Для иной — часто не хватает и ста миллиардов.

Электромеханические устройства на мысленном управлении

Поскольку мысли материальны и складываются из комбинаций нервных импульсов, то нет никаких физических запретов на создание разнообразных инженерно-технических "приложений" к мозгу — устройств на мысленном управлении. Собственно, все тело животного представляет собой именно такое устройство. Но нам, конечно, хотелось бы получить более наглядную демонстрацию. Что-нибудь из металла и пластика, пожалуйста. С электромоторчиками и шестеренками — и чтобы мозг всем этим мог напрямую управлять.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*