KnigaRead.com/

Антон Первушин - 108 минут, изменившие мир

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Антон Первушин, "108 минут, изменившие мир" бесплатно, без регистрации.
Перейти на страницу:

Первый «облегченный» вариант межконтинентальной баллистической ракеты «Р-у» (модель)


Главный недостаток такой схемы – частичное опустошение блока «А» до момента отделения. Получалось, что потом центральной ракете придется тащить к цели бесполезный груз. Но все искупала общая мощность, развиваемая «пакетом». Это был даже не шаг, а настоящий прыжок в ракетостроении.

Разумеется, в ходе эскизного проектирования пришлось определиться с двигателями. За их создание взялось Опытно-конструкторское бюро № 456 (ОКБ-456), разместившееся на базе авиазавода в подмосковном городе Химки[91] и возглавляемое Валентином Петровичем Глушко.


Конструктор ракетных двигателей Валентин Петрович Глушко


Крупнейший специалист по реактивному двигателестроению Валентин Глушко увлекался вопросами космонавтики с юности, а карьеру конструктора начал в ленинградской Газодинамической лаборатории[92]. В 1933 году часть сотрудников ГДЛ переехала в Москву, войдя в состав Реактивного научно-исследовательского института. Через пять лет Глушко был арестован по сфабрикованному обвинению во «вредительстве», работал в «шараге» – конструкторской группе 4-го Спецотдела НКВД при Тушинском авиамоторостроительном заводе. В августе 1944 года был досрочно освобожден, а еще через несколько месяцев направлен в Германию – изучать немецкий опыт создания баллистических ракет «А-4» («V-2»).

Первой задачей бюро Глушко после войны стало конструирование двигателей РД-100, в точности воспроизводящих двигатели «Овен», созданные Вальтером Тилем для «А-4». Разумеется, сначала предстояло развернуть производственную базу – заброшенный завод в Химках был восстановлен и переоборудован под новые задачи. Понимая, что воспроизведением немецкого опыта работа не ограничится, Глушко подошел к делу с размахом. На территории завода были созданы научно-исследовательская лаборатория, комплекс стендового оборудования и испытательная станция. Первый колышек под строительство будущей станции был забит в сентябре 1947 года в непосредственной близости от ОКБ – на относительно высоком откосе оврага, в излучине речки Химки. Больших перепадов высот, необходимых для свободного горения факела, здесь найти не удалось, поэтому Глушко предложил конструкцию наклонного (под 45°) стенда. Строительство велось быстрыми темпами, и к маю 1948 года монтаж стенда и кабины управления был завершен. Двадцать четвертого мая 1948 года на стенде состоялся успешный «прожиг» двигателя РД-100, что, безусловно, является историческим событием для отечественного ракетостроения.

Валентин Глушко плотно работал с немецкими специалистами, однако среди них было мало двигателистов и с какого-то момента они уже не могли помочь в решении тех или иных принципиальных конструкторских вопросов. Сотрудникам ОКБ-456 пришлось самостоятельно создавать теоретическую и практическую базу для движения вперед. Силами бюро была сконструирована экспериментальная камера сгорания КС-50 (неофициально ее прозвали «Лилипутом»), способная работать не только на спирте с кислородом, но и на других компонентах топлива, вплоть до фторсодержащих окислителей и таких экзотических горючих, как суспензия гидрида бериллия. В свою очередь КС-50 стала «сердцем» экспериментального ракетного двигателя ЭД-140, для испытаний которой в 1949 году был построен специальный стенд.


Экспериментальная камера сгорания КС-50 («Лилипут»)


Когда пришло время выбрать компоненты топлива для межконтинентальной ракеты «Р-7», Глушко оказался перед трудным выбором. Увеличение размеров спиртового двигателя уже не давало требуемого эффекта – это показали работы над двигателем РД-101 для ракеты «Р-2» и двигателем РД-103М для ракеты «Р-5М». Было ясно, что от спирта в качестве горючего в любом случае придется отказаться, перейдя на керосин, который куда более калориен и при этом столь же хорошо освоен промышленностью. Но при таком переходе возникали серьезные трудности: температура продуктов его сгорания в кислороде почти на тысячу градусов выше, чем у водных растворов спирта, в то время как охлаждающие свойства намного хуже. А именно горючим приходится охлаждать стенки камеры сгорания, если в качестве второго компонента – окислителя – используется быстро испаряющийся кислород. Задача охлаждения осложнялась еще тем, что для обеспечения оптимальных характеристик керосинового двигателя необходимо поднять давление газов в камере по крайней мере в два раза по сравнению с достигнутым на спиртовых двигателях.


Экспериментальный ракетный двигатель ЭД-140


Все эти трудности можно было преодолеть оригинальными конструкторскими решениями, но принципиально не решался один вопрос – ракета с жидким кислородом была плохой в военном отношении. Как уже упоминалось, использование кислорода в качестве окислителя не позволяло хранить крупногабаритную ракету в заправленном состоянии, что резко снижало ее боеготовность. Еще в 1940-х годах немцы установили, что потери жидкого кислорода в промежутке между его производством и использованием для запуска ракет «А-4» достигают 50 %! По результатам эксплуатации «Р-5М» в войсковых частях были подтверждены эти неутешительные данные: применение существующих вариантов базирования данных комплексов становится особенно затруднительным именно в случае осложнения международной обстановки, способного привести к вооруженному конфликту. «Р-5М» не могла находиться в заправленном состоянии больше тридцати суток из-за нехватки запаса жидкого кислорода в ракетных частях. Поэтому для пополнения потерь на испарение из баков требовалось либо располагать караванами из термостатированных автоцистерн для перевозки жидкого кислорода с заводов к месту дислокации ракет, либо иметь такие заводы в районах базирования ракетных частей, что лишало комплекс подвижности и делало его уязвимым для диверсантов и самолетов противника.

Зная эти недостатки жидкого кислорода, Валентин Глушко предложил заменить его азотной кислотой. Она является сильнейшим окислителем – легковоспламеняющиеся вещества самопроизвольно загораются при попадании на них капель азотной кислоты. Однако Сергей Королёв, привыкший работать с кислородом еще в довоенные времена, был резко против, указывая, в частности, на высокую токсичность кислоты – ракеты с ней требовали особых мер обеспечения безопасности при эксплуатации. Точку в первом серьезном споре главных конструкторов поставили расчеты: азотная кислота в качестве окислителя не могла обеспечить требуемую межконтинентальную дальность при заданных габаритах ракеты.

Работы над заменой спирта керосином Глушко начал еще весной 1948 года, когда по заданию правительства пытался создать большой кислородно-керосиновый двигатель РД-110 на основе немецкого опыта. Простая замена горючего не помогла – уже первые огневые испытания отдельных агрегатов выявили множество проблем, присущих «немецкой» конструкции со сферической камерой. К примеру, обнаружились высокочастотные колебания давления, приводящие к стремительному разрушению конструкции. Увеличение размеров камеры сгорания и давления внутри нее только способствовали развитию колебаний. Негативную оценку результатам испытаний дал и немецкий конструктор Вернер Баум, работавший в ОКБ-456.

Тогда стало ясно: чтобы построить работоспособный кислородно-керосиновый двигатель большой тяги, нужно отказаться от однокамерного варианта и перейти на несколько камер сгорания. Кроме обеспечения устойчивости процесса горения, многокамерная схема позволяла уменьшить высоту и массу двигателя.

Революционная идея о переходе на многокамерные двигатели была принята далеко не сразу. Команда Глушко проводила опыты с однокамерным экспериментальным двигателем ЭД-140, находя новые конструкторские решения, и, когда начались первые проработки межконтинентальной ракеты «пакетной» схемы, взялась за проектирование двигателя РД-105 для первой ступени этой ракеты и РД-106 – для второй. Оба двигателя были однокамерными, и Глушко полагал, что за несколько лет сумеет обойти трудности, в том числе и связанные с высокочастотными колебаниями. Но осенью 1953 года задание было изменено, вес боеголовки увеличен до 5,5 т, и двигатели РД-105 и РД-106 в одночасье оказались не нужны.


Ракетный двигатель РД-110 («Новости космонавтики»)


Осознав, что новый груз однокамерным двигателям не «потянуть», Валентин Глушко решил сгруппировать четыре аналогичные камеры сгорания (каждая – увеличенный в масштабе модифицированный вариант ЭД-140) в единый блок с общим турбонасосным агрегатом. При этом высота двигателя уменьшилась, снизилась масса как хвостового отсека, так и всей ракеты в целом. Основные принципы модульной конструкции позволяли начать серийное производство двигателя без значительных изменений в существующем производстве.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*