KnigaRead.com/
KnigaRead.com » Документальные книги » Биографии и Мемуары » Валерий Августинович - Битва за скорость. Великая война авиамоторов

Валерий Августинович - Битва за скорость. Великая война авиамоторов

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Валерий Августинович, "Битва за скорость. Великая война авиамоторов" бесплатно, без регистрации.
Перейти на страницу:

Существенным признаком авиационного двигателя как сложной технической системы является его непрерывное становление, т. е. наличие на каждом этапе жизненного цикла элементов и технологий, «отмирающих» в процессе жизни двигателя, и появление новых конструктивных элементов и технологий, повышающих ресурс, надежность, экономичность и прочих интегральных показателей качества.

Неполнота априорной информации о тепловых, механических, акустических и других нагрузках в системе двигателя приводит к тому, что в процессе работы создаваемого двигателя неизбежно выявляются дефекты, ограничивающие работоспособность двигателя. Эти дефекты условно могут быть разделены на две основные группы: дефекты, устраняемые настройкой системы без существенных конструктивных переделок, и дефекты, ограничивающие ресурс двигателя и устраняемые изменением конструкции основных узлов.

В качестве примера рассмотрим перечень дефектов (после разборки и дефектации) первого собранного двигателя ПС-90А, прошедшего первые 500-часовые испытания [31]:

• высокая температура под капотом внутреннего контура;

• нестабильный запуск;

• нагарообразование в камере сгорания;

• обрыв отдельных лопаток компрессора высокого давления;

• трещины на крупных лопатках статора вентилятора (диаметр вентилятора около 2 м);

• прогар и оплавление входных кромок лопаток соплового аппарата турбины;

• сколы, трещины и отгиб полок рабочих лопаток турбины;

• поломки трубопроводов;

• течь масла через радиальные зазоры в воздушных лабиринтных уплотнениях.

На первый взгляд мы имеем удручающую картину состояния двигателя, которая может привести в отчаяние неопытного главного конструктора. Однако большинство этих дефектов относятся к первому типу, т. е. достаточно просто устраняются настройкой системы. В самом деле, высокая температура под капотом устраняется увеличением расхода циркулирующего охлаждающего воздуха (т. е. увеличением площади вентиляционных окон обтекателя), прогары лопаток турбины — оптимизацией расположения отверстий для выпуска охлаждающего воздуха, течь масла — изменением расстояния между масляной форсункой и лабиринтом, поломки трубопроводов — выбором точек крепления на корпусе двигателя, устраняющих резонансные колебания труб и т. д. Дефекты второго типа в принципе обусловливают необходимость существенного изменения конструкции: изменение силовой схемы, числа ступеней турбокомпрессора и т. п. В практике КБ П. А. Соловьева, и в этом персональная заслуга этого последнего из «могикан», ни разу не возникало такой необходимости, что говорит о взвешенности подхода главного конструктора к оценке новизны и рисков. Такой баланс соблюсти очень трудно: идти приходится по лезвию или-или. Или неконкурентоспособность из-за исповедуемой консервативности, или большие риски не уложиться во времени с тем же результатом провала.



Современный испытательный стенд (НПО «Сатурн», г. Рыбинск).

Самым большим капиталом сегодня является пока еще сохранившийся опыт создания надежной авиатехники (что подтверждено 50-летней массовой эксплуатацией воздушных судов советского производства). Такая кредитная история дорогого стоит. Авиация в России (и военная, и гражданская — это единая неразрывная система) — это инструмент сохранения суверенитета. В этом качестве необходимо рассматривать авиацию (так же, как и космос, очевидно, не являющийся прибыльным бизнесом) как неизбежное «бремя», а не источник прибыли. Если автопром — это чистая коммерция (массовое производство), а космос — чистая дотация (единичное производство), то в авиапроме необходимо сочетать коммерцию и дотацию. Вопрос стоит о минимизации бремени дотации при условии выполнения авиацией своей геополитической функции. Необходим баланс коммерческих и геополитических интересов, когда имеешь дело с авиацией. Именно в нахождении оптимума сочетания этих интересов и заключается сложность (и одновременно инновационность) решения проблемы.

Очевидно, что сегодня в эпоху примата «суммы технологий» международная и внутренняя кооперация жизненно необходима для сохранения позиций на рынке.

И здесь мы наблюдаем исторический зигзаг: начало пермских моторов было связано с американской фирмой «Райт», а возобновление международного сотрудничества уже в форме участия в капитале акционерного общества — с ее тогдашним конкурентом «Пратт-Уитни», авиационное направление которой тоже развилось на базе конструкторской школы Райта.

СУММА ТЕХНОЛОГИЙ

Вот и настал XXI век, век геополитических стратегов, политтехнологов и менеджеров, «эффективных» и не очень. Роль личности объективно снизилась (если не учитывать растущую субъективную некомпетентность высшего слоя менеджеров — здесь-то в генерации иррационального роль личности повысилась: глупости невозможно предсказать) не только в обществе, но и в технике. Все больше бал правят технологии. Технологии задают вектор развития, в том числе и при разработке авиационных двигателей. Практически все авиационные двигатели XX века были спроектированы с помощью термодинамического подхода, т. е. с использованием интегральных (осредненных по объему) соотношений, что, в свою очередь, требовало большого объема экспериментальных работ для исследования локальных эффектов нагружения деталей. И сама термодинамика, и сопромат (сопротивление материалов), и теплопередача, использовавшиеся при проектировании двигателей в доинформационную эпоху (до создания ЭВМ со скоростями вычислений порядка петафлопс, т. е. 1015 логических операций в секунду) суть термодинамические методы. А фактическое разрушение всегда начинается с локальной трещины.

Таким образом, для повышения уровня проектирования, т. е. более эффективного использования возможностей конструкционных материалов, а следовательно, и уменьшения массы двигателя и повышения его кпд необходимо уметь моделировать процессы нагружения на локальном уровне, т. е распределенные по объему нагрузки с учетом реальной геометрии. Но как только такая задача поставлена, она влечет за собой необходимость столь же подробного моделирования граничных условий нагружения, т. е. соответствия уровней постановок. В нашем случае это в первую очередь решение газодинамических задач обтекания в трехмерной, а иногда и в четырехмерной (с учетом параметра времени) постановках.

Более того, локальность описания граничных условий чаще всего носит сугубо нелинейный характер. Что такое нелинейность? Это в первую очередь большой градиент изменения свойств среды по геометрической координате и времени. Например, резкое изменение нагрузки при наличии концентрации напряжения в случае неоднородностей свойств (постороннее включение в материале, геометрическая неоднородность, связанная с малым радиусом закругления кромок, и т. д.). Аналогично и в газовом потоке: например, наличие фронта ударной волны или пламени, где параметры потока (давление, температура, концентрация реагентов) сильно изменяются на малом протяжении. Но ведь… и сами давление и температура суть осредненные, термодинамические параметры. На самом деле они не существуют. Это не что иное, как уже осредненное воздействие (давление) или кинетическая энергия (температура) движущихся молекул. А любое осреднение (по пространству или времени) есть погрешность, которая может стать очень значительной в случае уже упомянутой нами нелинейности свойств среды. Таким образом, в этом случае необходимо переходить на уровень описания реально существующих объектов: скоростей молекул (вернее, их статистических распределений), геометрических координат и времени. Кроме молекул и их скоростей на уровне описания газодинамического взаимодействия, ничего другого (ни давления, ни температуры) не существует.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*