Борис Кушнер - Успенский пишет о Колмогорове
– Конференция была интересной, очень интересной. Большой успех. Очень интересно. Я услышал много замечательных докладов. Но самый понятный доклад сделал вчера Х. Давно я не слышал такого понятного доклада. Да, конечно, я не посчитал предполных классов в трёхзначной логике. Софья Александровна[xiii] говорила мне тогда: «Саша, посчитай классы!» А я не посчитал! – здесь А.В. с полным удовольствием зажмурился и погрузил лицо своё в тёплый солнечный свет... – Я...поленился!
Задевать А.В., как видно, было небезопасно.
4. Когда в 1961 или в 1962 году, будучи студентом мех-мата, я выбрал специализацию по кафедре математической логике (ср.[5]),интерес к философии и основаниям математики был одним из мотивов. Тогда же я сделал доклад об интуиционистской математике на семинаре по истории математики, а несколько позже на семинаре по математической логике и конструктивной математике (под руководством А.А. Маркова и Н.М. Нагорного). Основным источником моей эрудиции в то время были две небольшие книжки Вейля и Гейтинга [6–7], переведённые ещё до войны известным историком математики А.П. Юшкевичем. Из интересных воспоминаний Юшкевича о Колмогорове [8] можно узнать, что Колмогоров был инициатором этих великолепно выполненных переводов (в то время я ещё пребывал в блаженном неведении трудностей, с которыми сталкивается переводчик подобных работ, особенно в случае автора со столь ярким литературным талантом, как Г. Вейль). Тогда же я прочёл и две ранние работы (1925 и 1932 года, [9–10]) Колмогорова, посвящённые интуиционистской логике. Содержание этих работ детально охарактеризовано в обзорной статье Успенского [1]. Трудно удержаться от изумления, думая о работе 1925 года. Написанная 22-летним студентом, работа эта отличается огромной зрелостью и намного лет опережает современный юному автору уровень науки. В работе ясно чувствуется творческий почерк колмогоровского таланта: постановка проблем, глубоко мотивированных философски, огромная мощь в разработке необходимого концептуального и технического аппарата, в преодолении конкретных математическиз трудностей. Достаточно сказать, что в этой студенческой публикации впервые предпринято математическое изучение интуиционистской логики, сформулированы аксиоматические системы для этой логики, предвосхищающие гораздо более позднюю аксиоматизацию интуиционистской математики, выполненную А. Гейтингом. Здесь же по существу (с точностью до технических деталей) впервые построено так называемое минимальное исчисление, переоткрытое в 1937 году Иохансоном (которому принадлежит и сам термин). Ещё более важной представляется мне изобретённая Колмогоровым идея погружения классической математики в интуиционистскую, в результате чего становится возможным доказательство непротиворечивости классической математики относительно интуиционистской. С этой целью предложена и первая из известных ныне погружаюших операций, основанная на глубоком проникновении в природу математического оперирования с отрицанием. Сама идея о том, что интуиционистская математика только по видимости уже классической могла быть высказана в то время только пророком. Только в 1933 году эти идеи были переоткрыты К. Гёделем. Вся описанная только что проблематика подсказана глубокими философскими проблемами, связанными с законом исключённого третьего. После критики Брауэра сомнительность этого логического принципа в применении к бесконечным совокупностям ощущалась рядом математических мыслителей, в частности Д. Гильбертом и Г. Вейлем. Не чужды были эти сомнения и Колмогорову. Во всяком случае, 22-летний студент (в отличие от многих своих старших коллег) ясно ощущал вызов, заключённый в вопросе: почему сомнительность или даже незаконность неограниченного употребления принципа исключённого третьего так долго оставалась незамеченной и почему такое неограниченное употребление не приводит к противоречиям[xiv].
А.А. Марков и Б.А. Кушнер, Москва, 1979 год
Ответ Колмогорова на этот вызов вкратце состоит в следующем. Во-первых, употребление закона исключённого третьего вполне оправдано в случае конечных совокупностей, т.е. в области финитарных суждений. Во-вторых, имеет место гораздо более сильное обстоятельство: если бы противоречие было найдено в классической теории, свободно оперируюшей с принципом исключённого третьего, то противоречие существовало бы и в одноимённой интуиционистской теории, в которой использование этого принципа ограничено только безопасными финитными случаями. Иными словами, принцип исключённого третьего не добавляет новых противоречий. И если в первом положении чувствуется заметное влияние Гильберта, то вторая идея (погружения классической математики в интуиционистскую) представляется ошеломляюще новой. Техническим аппаратом для реализации такого погружения оказывается концепция формализации математических теорий, разработанная Гильбертом, и идея погружающей операции, открытая Колмогоровым. Помимо оправдания употребления закона исключённого третьего (важнейшего математического орудия с самых древних времён) подход Колмогорова доставляет, очевидно, и определённое обоснование нашей замечательной, но, как и всё замечательное, не вполне безопасной способности оперировать с актуальной бесконечностью. Классическая математика с её актуально бесконечными множествами погружается в математический мир, где бесконечность допускается лишь в своей гораздо более мягкой, потенциальной форме.
В 1974 году А.Г. Драгалина[xv] и меня попросили написать статью об интуиционизме для третьего издания Большой Советской Энциклопедии. Статья ([11]) была направлена на отзыв Колмогорову. Когда я увидел рукопись с колмогоровскими замечаниями, я ещё раз поразился свежести его восприятия математической и философской области, которую он оставил столько лет назад...
Небезынтересен вопрос, почему молодой студент вообще заинтересовался такими окраинными вопросами, по видимости далёкими от интересов окружавшей его математической среды. Конечно, нельзя исключать огромного влияния Д. Гильберта и острой дискуссии по основаниям математики, развернувшейся между ним и лидером интуиционистов Брауэром. Но и сделанное выше замечание о математической среде, окружавшей молодого Колмогорова тоже глубоко неверно! В силу совпадения ряда разнородных причин проблемы оснований математики и, в частности, интуиционистской математики часто и горячо дискутировались в Москве в 20-е годы (ср. цитировавшиеся выше воспоминания Юшкевича [8]). Публичные сообщения об интуиционизме делал А.Я. Хинчин, им была опубликована в 1926 году статья об интуиционизме, отголоски этого интереса можно различить и в некоторых его книгах. Наконец, следует сказать, что основатель Лузитании, учитель Колмогорова, Александрова и многих других выдающихся математиков Н.Н. Лузин был не только выдающимся практическим математиком, но и глубоким математическим мыслителем. Достаточно упомянуть его участие в начале века в знаменитой переписке-дискуссии по основаниям теории множеств и, в особенности аксиомы выбора, между ведущими французскими математиками (см. [12]). Достойно восхищения и пророческое предсказание Лузиным позднейших результатов о независимости в теории множеств. Неудивительно, что ученики Лузина ощущали математику не как технические манипуляции с формулами и головоломками, а как живой организм, само функционирование которого представляло волнующую загадку. На этот фон парадоксальным образом наложился и марксистский энтузиазм, характерный для ранних послереволюционных лет. Мне трудно судить до какой степени этот энтузиазм уже в те годы был отравлен низким карьеризмом, демагогией и полной догматизацией философии, которые мне довелось наблюдать в моей молодости. Трудно, однако, избавиться от впечатления, что многие горячие головы в то время вполне искренне полагали, лучше сказать верили, что в философии Маркса найден своего рода «философский камень», окончательный научный ответ на все вопросы Бытия. Возможно, чтение работ В.И. Ленина проливает определённый свет на этот интересный психологический феномен. Неиссякаемая, просто религиозная убеждённость в обладании окончательной, единственно верной методологией, позволяющей понять и объяснить всё и вся, приводит к тому, что этот человек, наделённый, среди прочего, исключительно острым критическим умом, без тени сомнения и юмора вторгается в области знания, в которых он абсолютно некомпетентен, поучает Пуанкаре, Маха, Эйнштейна и т.д. Из этого же настроения рождаются и знаменитые ленинские афоризмы, вроде «электрон также неисчерпаем, как и атом», «учение Маркса всесильно потому, что оно верно» и т.д. и т.п., буквально вколоченные (среди прочих куда менее безобидных догм) большевистской пропагандой в сознание (и в подсознание!) подданных бывшей советской Империи[xvi]. Пожалуй, одной из вершин этой смехотворной агрессивной некомпетентности является знаменитое ленинское заявление: «...ДАЖЕ в математике нужна фантазия, ДАЖЕ для того чтобы открыть дифференциальное исчисление нужна была фантазия»[xvii]. (Эти бессмертные «даже» выделены мною). Позднее, в случае, скажем, Сталина эта первоначальная убеждённость в обладании абсолютной истиной, конечно, померкла перед обладанием абсолютной властью и ощущением полной безнаказанности. И всё же кое-что от этой убеждённости оставалось, например, в знаменитых изысканиях вождя всех народов по языкознанию. Той же породы, видимо, было и настроение, в котором незабвенный А.И. Жданов учил (кажется, даже за роялем) Шостаковича, Прокофьева и Хачатуряна как сочинять хорошую мелодичную музыку...