KnigaRead.com/

Александр Прищепенко - ШЕЛЕСТ ГРАНАТЫ

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Прищепенко, "ШЕЛЕСТ ГРАНАТЫ" бесплатно, без регистрации.
Перейти на страницу:

Подытожим причины, по которым применение ударной волны целесообразно для очень быстрого и очень «глубокого» сжатия магнитного поля.

По обе стороны фронта ударной волны разница плотностей мала: даже мощные ударные волны с давлением в миллион атмосфер сжимают твердые тела лишь вдвое, а дальнейшее повышение давления сопровождается не сжатием, а ростом температуры. Малая разность плотностей означает, что при ударно-волновом сжатии не развиваются нестабильности.

– Если нагрев при ударном сжатии значителен, возможны ионизация и скачок проводимости: перед фронтом вещество является изолятором, в котором магнитное поле распространяется со световой скоростью, а за фронтом – проводником, в котором скорость распространения поля на много порядков ниже. Такой волной, образующей замкнутое кольцо, сходящееся к центру, может сжиматься магнитное поле – как лайнером, но без нестабильностей.

Как вмораживание, так и диффузия приводят к потерям магнитного ноля: оно «захватывается» проводящим веществом и уже далеко не полностью концентрируется в области сжатия. Становится возможным «сбрасывать» излишнее поле за фронт ударной волны, препятствуя тем самым чересчур быстрому усилению магнитного давления. Подбирая характеристики вещества (степень сжатия и проводимость в ударно-сжатом состоянии) можно регулировать «сброс» поля, согласуй тем самым закон возрастания давления поля в области сжатия с гидродинамическим давлением в ударной волне, устраняя препятствие для сжатия до сколь угодно малого радиуса. Будем, однако, помнить, что работа против сил магнитного поля (а значит, и повышение энергии поля) совершается только за счет кинетической энергии вещества. Поэтому, выбор вещества, в котором будет сжиматься поле, должен представлять компромисс: если ударное сжатие будет слишком мало (очень малы промежутки между карандашами), то все магнитное поле будет вморожено, существенного движения массы вещества не будет, а значит, не будет и заметного усиления поля в области сжатия. Если же сжатие будет слишком велико, случится то, что случается в ИВМГ: магнитное давление остановит компрессию поля, потому что быстро станет «сильнее» гидродинамического давления.

…Непрост в экспериментальной физике переход от научной болтовни к практическим решениям. Вы знаете, что «стрелять» до бесконечности вам не позволят: и время и финансирование ограничены всегда. Не верьте лжи, что перед опытом все было рассчитано: для устройства созданного впервые слишком многие параметры, необходимые для расчетов, сомнительны. Поэтому, после арифметических вычислений (в крайнем случае – после решения простейшего дифференциальною уравнения) от вас требуется твердо произнести что-либо вроде: «Рабочее тело в источнике излучения будем делать из монокристалла иодида цезия!». Основания для такого решения были следующими.

– Если конечный размер области сжатия – около десятка микрон, то фронт ударной волны должен быть очень гладким: с неровностями, размеры которых меньше размеров этой области. Вспомнилась статья об оптических исследованиях ударных волн в монокристаллах: С. Кормер утверждал, что фронт там «гладок, как зеркало», размер неровностей не превышает микрона. В любом случае, монокристалл – наиболее упорядоченная структура вещества – «последняя линия обороны»: если не выйдет в монокристалле, то не выйдет нигде!

– Этот монокристалл должен включать атомы с самым низким потенциалом ионизации, чтобы скачок проводимости в ударной волне был существенным. Значит – цезий.

– Этот монокристалл должен существовать в осязаемых размерах, не стоить бешеных денег не быть ядовитым, и желательно, чтобы хотя бы некоторые его свойства были исследованы ранее.

Я знал о таком монокристалле – йодиде цезия – еще со времен работы в НИИАА!

Изготовить в НИИ ВТ новые устройства (цилиндрические ударно-волновые излучатели, ЦУВИ, рис. 4.26) не заняло мною времени: цилиндрик монокристалла 1 в них был окружен кольцевым зарядом 2, детонация в котором инициировалась стаканом 3 из эластичного ВВ, через который проходили провода, соединявшие с источником питания пару медных витков 4, а в донной части – располагался детонатор.

2 марта 1983 года атмосфера на испытательной площадке была благодушная: два первых опыта (МГД генератор + объемно-детопируюшая система) продемонстрировали ожидавшийся результат начальникам кафедр академии. Приступили к испытаниям моих сборок. Первая по каким-то причинам сработала неважно, но готовить взрывной опыт и не предусмотреть необходимость его повторения – непростительная глупость! При взрыве второй сборки лучи осциллографов рванулись вверх, «выскочив» за пределы экранов. Офицеры Академии сообщили, что вышли из строя смесительные диоды в антеннах, стоявших в пяти метрах от взрыва. Мощность излучения по крайней мере в сто раз превысила ту, которую регистрировали в опытах с объемной детонацией! Этот опыт поставил других участников испытаний в затруднительное положение: их начальники увидели устройство размерами в десятки раз меньшее, чем объемно-детонирующис макеты, но излучавшее РЧЭМИ на два порядка большей мощности. Когда шок миновал, начались маневры, которым не приходилось слишком удивляться: от меня стали требовать описания ЦУВИ, убеждая, что оно «необходимо для отчета». Яснее ясною, что в отчете я был бы лишь одним из авторов. Рисковать уступить такую находку, как ЦУВИ, было неразумно: не так уж часто они выпадают в жизни исследователя. Уклончивость попытались преодолеть шантажом: Горбачий заявил, что диоды из строя не выходили, сигналы на осциллографах были наводками, потому как «электрончиков, электрончиков в твоем устройстве не видать», а, если не будет отчета, то и в дальнейших испытаниях офицеры академии участвовать не намерены. Саркастически «согласившись» с противоречивыми доводами, пришлось заметить, что, раз все это было наводками, то, действительно, нет смысла тратить время на опыты, а тем более – на написание отчета.


Рис. 4.26. Внешний вид сборки Е-7 – цилиндрического ударно-волно- вого излучателя (ЦУВИ) и ее схема


Если бы меня спросили, от кого я узнал об идее выведения из строя электроники противника при воздействии на нее мощным РЧЭМИ, я затруднился бы ответить и сейчас. Эта идея носилась в воздухе, очень многим было известно: для того, чтобы вышел из строя смесительный диод в радиолокаторе, достаточно индуцировать токовый импульс энергией всего в десятимиллионную долю джоуля 14* .

Более того, развитие электроники связывалось с повышением степени интеграции, дальнейшей миниатюризацией полупроводниковых элементов, а это означало, что такие элементы будут становиться все менее стойкими к токовым перегрузкам. Так что РЧЭМИ обещало стать весьма эффективным поражающим фактором, во всяком случае, когда речь шла о целях, в состав которых функционально входила электроника: сама угроза его применения блокировала основную тенденцию развития электронных средств. Однако новое оружие не обещало быть универсальным, например, воздействие РЧЭМИ поживой силе неэффективно: уж слишком высокие плотности энергии были для этого необходимы. К тому же, РЧЭМИ невозможно накапливать, да и вообще с хранением электромагнитной энергии дело обстоит неблагополучно: например, в заряженном высоковольтном конденсаторе максимальная плотность электрической энергии не превышает десятых долей джоуля на кубический сантиметр, и хранится она недолго; в аккумуляторе плотность энергии повыше, но, в случае необходимости, ее нельзя «извлечь» за миллионные доли секунды.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*