KnigaRead.com/
KnigaRead.com » Документальные книги » Биографии и Мемуары » Борис Иоффе - Без ретуши. Портреты физиков на фоне эпохи

Борис Иоффе - Без ретуши. Портреты физиков на фоне эпохи

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Борис Иоффе, "Без ретуши. Портреты физиков на фоне эпохи" бесплатно, без регистрации.
Перейти на страницу:

Работа Ландау, Абрикосова и Халатникова. Сразу после зачисления в ИТЭФ (1950 г.) я стал изучать теорию перенормировок, фейнмановскую технику. А. Д. Галанин пытался вычислять радиационные поправки в квантовой электродинамике (КЭД) ещё в старой технике. Он переключился на новую фейнмановскую технику и был для меня как бы старшим товарищем. Мы научились вычислять радиационные поправки в КЭД и мезонной теории, проводить перенормировку — сначала в низшем порядке теории возмущений, а затем и в более высоких. Мне удалось построить точную систему зацепляющихся уравнений для функции Грина мезонной теории. Затем в совместной работе А. Д. Галанина, И. Я. Померанчука и моей была проведена перенормировка массы и заряда в такой системе. Мы показали, что решения такой системы связанных уравнений не должны содержать бесконечностей — они должны быть конечными. Однако, при попытке обрыва этой бесконечной системы на каком-либо конечном члене, бесконечности появлялись опять: для того, чтобы избавиться от них, нужно было просуммировать весь бесконечный ряд. Так что эта попытка не привела к успеху, хотя мы многому научились.

Вычисляя первые порядки теории возмущений, мы с Галаниным увидели, что в поляризационных операторах и вершинных функциях при больших виртуальностях р2 возникают ln(р2/m2), причём в 1-м порядке появляется ln(р2/m2), во 2-м есть члены, пропорциональные ln2(р2/m2), в третьем — ln3(р2/m2) и т.д. Очень поучительной оказалась для нас статья Эдвардса (S.F.Edwards. Phys. Rev. 90, 284 (1953)). Эдвардс построил уравнение для вершинной функции в лестничном приближении и установил, то в n-порядке теории возмущений возникают члены (e2ln р2/m2)n.

В 50-е годы Ландау приезжал в ТТЛ (ИТЭФ) каждую среду. Он участвовал — и очень активно — в проходивших по средам экспериментальных семинарах, которыми руководил Алиханов. После семинара Ландау приходил в комнату теоретиков, где тогда сидели Галанин, Рудик и я. Сюда же собирались все остальные теоретики, и начинались обсуждения, продолжавшиеся часа два.

На одном таком обсуждении Померанчук, Галанин и я объяснили Ландау ситуацию с радиационными поправками в квантовой электродинамике. Из этих разговоров у Ландау возникла идея суммирования старших логарифмических членов, т. е. членов (e2ln p2)n в КЭД. Именно за это Померанчуку, Галанину и мне была выражена благодарность в первой работе Ландау, Абрикосова и Халатникова. (Ландау был скуп на благодарности и выражал их только тем, кто действительно внёс что-то существенное в его работу.)

Первоначально, когда Ландау формулировал идею, у него было представление, что в результате суммирования старших логарифмов в КЭД возникает то, что сейчас называется асимптотической свободой — взаимодействие станет убывать с ростом p2. Такие ожидания сформулированы в первой из серии работ Ландау, Абрикосова и Халатникова, которая была отправлена в печать ещё до того, как был получен окончательный результат. Приезжая в ТТЛ по средам, Ландау рассказывал, как идут вычисления. Основные идеи (поворот контура интегрирования, введение обрезания, выбор калибровки и т.д.) принадлежали Ландау, но технически все вычисления делали Абрикосов и Халатников — сам Ландау фейнмановской техникой владел плохо. Полученный ими результат подтвердил ожидания — эффективный заряд в КЭД убывал с ростом энергии.

Галанин и я решили повторить эти вычисления. Нам хотелось провести ту же идею в нашей системе перенормированных уравнений. (В дальнейшем вместе с Померанчуком мы это сделали.) Однако, уже вычисление первой петли привело к противоположному результату: эффективный заряд не убывал, а рос с ростом энергии! В ближайшую среду мы рассказали это Ландау и убедили его в своей правоте. В последней из серии работ Ландау, Абрикосова и Халатникова, которую авторы уже собирались отправить в печать, была ошибка в знаке, кардинально меняющая все выводы — вместо асимптотической свободы появился нуль заряда. Как впоследствии рассказывал С. С. Герштейн (который тогда работал в Институте Физических Проблем), вернувшись после этого семинара из ТТЛ, Ландау сказал: «Галанин и Иоффе спасли меня от позора».

Спустя год или два после опубликования работ Ландау, Абрикосова и Халатникова, когда уже была опубликована статья Ландау и Померанчука с более общим обоснованием нуля заряда, Ландау получил письмо от Паули. В нём говорилось, что аспирант Паули Вальтер Тирринг нашёл пример теории, в которой нет нуля заряда — скалярной теории взаимодействия мезонов с нуклонами. К письму была приложена рукопись статьи Тирринга. Дау дал эту статью Чуку, а Чук мне, с просьбой разобраться. Я изучил статью и пришёл к выводу, что она неправильна. Ошибка состояла в том, что использовалось тождество Уорда, возникающее при дифференцировании по массе нуклона, а оно нарушалось при перенормировке. Я сказал об этом Чуку. «Вы нашли ошибку, Вы должны написать об этом Паули», — сказал Чук. Мне было страшно: писать самому Паули, что его аспирант сделал ошибочную работу, а он, Паули, этого не заметил! Но Чук настаивал, и в конце концов, я написал письмо Паули. Ответ я получил не от Паули, а от Тирринга. Он полностью признал свою ошибку. Статья так и не появилась в печати.

Работы по несохранению С, Р, Т. В 1955-1956 годах всех волновала загадка θ – τ. Экспериментально наблюдались распады K-мезонов на 2 и 3 π-мезона. При сохранении чётности, которая тогда считалась незыблемой, один и тот же мезон не мог одновременно распадаться на 2 и 3 π-мезона. Поэтому большинство физиков думало, что это два разных мезона — θ и τ. По мере уточнения экспериментов, однако, становилось ясно, что их массы совпадают. Весной 1956 года Ли и Янг выступили со своей революционной статьёй, в которой выдвинули гипотезу о несохранении чётности в слабых взаимодействиях, объяснили загадку θ – τ и вычислили эффекты несохранения чётности в β-распаде и цепочке распадов π → μ → е. Ландау категорически отвергал возможность несохранения чётности, говоря: «Пространство не может быть асимметрично!» Померанчуку больше нравилась гипотеза вырожденных по чётности дублетов странных частиц.

А. П. Рудик и я решили вычислить ещё какой-нибудь эффект на основе предположения о несохранении чётности, помимо рассмотренных Ли и Янгом. Наш выбор пал на β—γ корреляцию. Я сделал оценку и получил, что эффект должен быть большим. Рудик приступил к детальным вычислениям. Через некоторое время он приходит ко мне и говорит: «Знаешь, эффект равен нулю». «Не может быть!» — говорю я. Мы садимся разбираться, и я вижу, что Рудик, как образованный теоретик, когда писал лагранжиан слабого взаимодействия, наложил условие С-инвариантности, что привело к тому, что константы при несохраняющих чётность членах оказались чисто мнимыми. У Ли и Янга константы были произвольными комплексными числами. (Если положить их чисто мнимыми, то и у них все не сохраняющие чётность эффекты пропадают.) Возник вопрос о связи С- и P-инвариантности. Я обсуждал этот вопрос с Володей Судаковым, и в разговоре мы вспомнили о работе Паули. Я читал эту работу раньше, но совершенно забыл о ней. Частично это было связано с тем, что Ландау скептически относился к данной работе: он считал, что СРТ-теорема есть некое тривиальное соотношение, которому удовлетворяет любой лагранжиан. Замечу, что в статье Ли и Янга вообще нет ни слова о СРТ-теореме и о связи C-, P- и Т-инвариантности.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*