Уолтер Айзексон - Эйнштейн. Его жизнь и его Вселенная
Прежде чем дать обоснование своей корпускулярной теории света, он подчеркнул, что не обязательно отказываться от волновой теории, которая будет оставаться полезной. “Волновая теория света, которая имеет дело с непрерывными пространственными функциями, хорошо работает в чисто оптических явлениях и, возможно, никогда не будет заменена другой теорией”.
Его способ совмещения волновой и корпускулярной теорий состоял в том, чтобы “эвристически” считать, что наше наблюдение волн включает статистическое усреднение положений бесчисленного количества частиц. “Нужно иметь в виду, – говорил он, – что при оптических измерениях наблюдаются усредненные по времени, а не мгновенные величины”.
Далее в тексте статьи следовала, быть может, самая революционная фраза из всех написанных Эйнштейном. В ней была сформулирована мысль о том, что свет состоит из дискретных частиц или энергетических пакетов: “Согласно предположению, которое будет здесь рассмотрено, если луч света идет от точечного источника, энергия не распределяется в расширяющемся объеме непрерывно, а состоит из конечного числа энергетических квантов, локализованных в точках пространства, причем излучаться и поглощаться они могут только неделимыми порциями”.
Эйнштейн проверял эту гипотезу, выясняя, действительно ли объем, заполненный излучением абсолютно черного тела, которое он теперь считал состоящим из дискретных квантов света, может вести себя так же, как объем, заполненный газом, состоящим, как известно, из отдельных частиц. Эйнштейн взял формулу, описывающую изменение энтропии газа при изменении его объема, сравнил с тем, как меняется энтропия абсолютно черного тела при изменении его объема, и обнаружил, что энтропия излучения “меняется при изменении объема по тому же самому закону, что и энтропия идеального газа”.
Он сделал расчет, используя формулы больцмановской статистики для энтропии. При описании излучения абсолютно черного тела он использовал тот же самый математический аппарат статистической механики, который используется для описания разреженного газа частиц. Эти расчеты и привели Эйнштейна к выводу, что излучение “в термодинамическом смысле ведет себя так, как будто состоит из независимых энергетических квантов”. Он также нашел способ расчета энергии “частиц” света при определенной частоте, значение которой совпало со значением, найденным Планком17.
Дальше Эйнштейн показал, как существование этих световых квантов могло объяснить результаты эксперимента Ленарда по фотоэлектрическому эффекту, милостиво названного им “новаторской работой”. Если считать, что свет распространяется в виде дискретных квантов, то энергия каждого кванта просто определяется частотой света, умноженной на постоянную Планка. Эйнштейн предположил: если считать, “что световой квант передает всю свою энергию одному электрону”, то из этого следует, что свет с большей частотой будет выбивать электроны с большей энергией. С другой стороны, увеличение интенсивности (но не частоты) будет просто означать, что будет вылетать больше электронов, но при этом энергия каждого останется неизменной.
Именно такой результат Ленард наблюдал в своем эксперименте, но Эйнштейн, желая подчеркнуть, что результаты получены чисто теоретически, а не являются простой интерпретацией экспериментальных данных, с некоторой осторожностью, а может быть, скромностью во введении к статье утверждает, что свет состоит из маленьких квантов, и, “насколько можно видеть, наша концепция не противоречит свойствам фотоэффекта, которые наблюдал герр Ленард”.
Раздув костер, зажженный Планком, Эйнштейн превратил его в пламя, которое опалило всю классическую физику. Что именно содержится в статье Эйнштейна 1905 года такого, что делает ее по-настоящему прорывной и стоящей особняком, и почему она оценивается выше работы Планка?
В действительности, как пояснил Эйнштейн в статье, написанной в следующем году, его роль состояла в том, что он осознал физическое значение того, что открыл Планк18. Для Планка – революционера поневоле – квант был математическим приемом, который объяснял, как энергия испускается и поглощается при взаимодействии с материей. Но он не видел, как это связано с физической сущностью света в частности и электромагнитного поля вообще. Историки науки Джеральд Холтон и Стивен Браш писали: “Можно считать, что в статье Планка 1900 года квантовая гипотеза использовалась как математический прием, введенный для того, чтобы найти статистическое распределение, а не как новая физическая концепция”19.
Эйнштейн, напротив, считал, что квант света – реальный объект, загадочный, невообразимый, раздражающий, некое безумное завихрение космоса. Для него эти кванты энергии (которые только в 1926 году назвали фотонами20) существовали, даже когда свет распространялся сквозь вакуум. Он писал: “Мы хотим показать, что определение Планком элементарных квантов до некоторой степени независимо от его теории излучения абсолютно черного тела”. Другими словами, Эйнштейн утверждал, что корпускулярная природа света – это свойство самого света, а не просто способ описания взаимодействия света с материей21.
Даже после опубликования Эйнштейном статьи Планк не признал того прорыва, который совершил Эйнштейн. Через два года он предупредил молодого самоуверенного клерка из патентного бюро, что тот зашел слишком далеко и что на самом деле кванты просто описывают процессы, происходящие во время поглощения и излучения света, а не реальные свойства излучения в вакууме. Планк изложил ему свою точку зрения так: “Я не вижу смысла в понятии “квант действия” (квант света) в вакууме, оно имеет смысл только в месте, где происходит поглощение и испускание”22.
Планк не принимал концепцию физической реальности квантов света и в дальнейшем. Когда через восемь лет после опубликования статьи Эйнштейна Планк предложил ему долгожданное место в Прусской академии наук, в рекомендательном письме, написанном им и еще несколькими учеными и содержащем много похвал Эйнштейну, Планк сделал приписку: “То, что иногда в своих построениях он может зайти слишком далеко, например в своей гипотезе о квантах света, вряд ли заслуживает серьезного осуждения”23.
Незадолго до смерти Планк объяснил, почему ему долгое время не хотелось признавать, что следствия, вытекающие из его открытия, существуют в реальности. “Мои безуспешные попытки как-то встроить квант действия в классическую теорию продолжались много лет и потребовали от меня значительных усилий, – писал он, – многие из моих коллег воспринимали это почти как трагедию”.