KnigaRead.com/

Георгий Ветров - Робер Эсно-Пельтри

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Георгий Ветров, "Робер Эсно-Пельтри" бесплатно, без регистрации.
Перейти на страницу:

расчетов температуры ракеты при движении в атмосфере он предлагал для степенной ракеты

воздержаться от ускорения, равного 10 g, «которого следует избегать как неудобного и по другим

соображениям» [5, с. 367].

Отвечая в третьей главе на вопрос о практическом назначении ракет, Эсно-Пельтри прежде всего

называет исследование высших слоев атмосферы. Особый интерес, как он считает, вызвала бы

проверка предположения о наличии зоны водорода и выше нее — еще более легкого газа, якобы

вызывающего световые явления северных сияний (неизвестный по своему химическому составу

сверхлегкий газ называли геокоронием). Предельная высота подъема метеорологических зондов —

30 км — не позволяла осуществить проверку этой гипотезы, что делало использование ракет

особенно заманчивым. Говоря о принципиальной возможности с помощью ракет достигнуть

любой высоты, Эсно-Пельтри обращает внимание на трудность доставки на Землю достаточного

количества столь разреженного газа, но выражает уверенность, что для физико-химических

исследований может оказаться достаточным и его малое количество.

Ограничившись такого рода соображениями об изучении высших слоев атмосферы, Эсно-Пельтри

переходит к анализу задачи Годдарда о посылке ракеты на Луну, причем его интересует

возможность реализации этой задачи

106

в ближайшее время — в связи с сообщениями американских газет о предстоящем пуске такой ракеты,

«достойной предприимчивости американцев», как он выразился. Здесь впервые Эсно-Пельтри

анализирует реальную конструкцию, отказавшись от принятой им схемы ракет, состоящих из одного

топлива. Исходя из сведений, приведенных Годдардом, о величинах массы элементов конструкции

ракеты и массы горючего для заброски 1 кг массы на Луну, соответственно 43 и 558 кг, Эсно-Пельтри

заключает: «...я не представляю себе устройства подобного снаряда» [5, с. 368]. Нужно при этом иметь

в виду, что Эсно-Пельтри был выдающимся конструктором, много повидавшим в своей авиационной

деятельности; это делало его заключение о «ракете Годдарда» особенно авторитетным.

Эсно-Пельтри видит необходимость использования и для «ракеты Годдарда» иных источников энергии,

нежели предлагаемые американским ученым, в частности водород и кислород. В этом случае при

максимальном ускорении 5g соотношение начальной и конечной масс становится намного

благоприятнее — 1: 632. Отстаивая очень важную, с его точки зрения, идею ограничения ускорения,

Эсно-Пельтри предлагает использовать в качестве источника энергии атомарный водород (скорость

истечения более 10000 м/с), что даже для ускорения 2 g дает приемлемое, с его точки зрения,

соотношение между начальной и конечной массой. Однако Эсно-Пельтри оговаривается, что

особенности практического использования атомарного водорода пока пе известны.

Продолжая анализировать «задачу Годдарда», Эсно-Пельтри обращает внимание на трудности

обеспечения точности стрельбы как в случае прямого попадания, так в особенности в задаче облета

Луны (что он предлагал Годдарду в своем письме от 16 июня 1920 г.). При этом он указывал на

«невозможность послать снаряд вокруг Луны, базируясь лишь на точности наводки и выборе скорости

при отправлении».

Специалист в области ракетодинамики А. П. Мандры-ка, анализируя рассматриваемую работу Эсно-

Пельтри, так оценивает полученные им результаты, относящиеся к «задаче Годдарда»:

«...целесообразно сказать о следующем важном результате, установленном Эсно-Пельтри за 30 лет

2 Эсно-Пельтри в своих расчетах принимал заниженную скорость истечения газов для компонентов водород—

кислород — 3000 м/с, ее действительное значение — 4000 м/с.

107

до того, как облет Луны с помощью ракет стал реальностью. Было найдено, что в таком случае должны

быть выдержаны не только угол запуска, вернее угол между касательной к траектории и горизонтом в

момент выключения двигателя, но и скорость, отвечающая этому моменту. Он подчеркивал, что ее

величина не должна отклоняться от второй космической скорости более чем на 1%» [95, с. 90].

В задаче облета Луны представляет интерес и возвращение аппарата на Землю. Рассматривая спасение

аппарата с помощью обычного парашюта (давление на поверхности 2 кг/м2), Эсно-Пельтри получает

следующую картину изменения ускорения: начиная с высоты 150 км замедление становится равным 1,8

g, затем начинается спуск с ускорением, которое на высоте 91,5 км становится равным 229 g, a затем

убывает до нуля на высоте 70 км. Такие условия спуска могут вынести только специально

сконструированные приборы, но не живые существа. Эсно-Пельтри видит выход из положения в

осуществлении входа аппарата в атмосферу по касательной, но и в этом случае нужных условий для

спуска обеспечить не удается. При входе под углом в 12° замедление уменьшается только в 4,5 раза по

сравнению со случаем прямого возвращения аппарата, т. е. будет равным опять-таки недопустимой

величине — 51 g. Уменьшение угла входа до 6° снижает эту величину до 23,4 g. Далее Эсно-Пельтри

предлагает такие технические решения, которые покажутся очень знакомыми современному

специалисту: «Следовало бы пользоваться парашютами-автоматами переменной площади, которые

начинали бы работать раньше, постепенно уменьшая свою поверхность. Впрочем, и это требует такой

точности при тангенциальном спуске, что ее достичь можно лишь при помощи управления ракетой

добавочными взрывами. Однако более целесообразно было бы применить эти взрывы для торможения

при спуске» [5, с. 373].

Рассмотрев задачу спуска с учетом температурных условий, Эсно-Пельтри делает еще более

определенный вывод: «...применение парашюта в атмосфере невозможно, и нужно для торможения

иметь средства на самом аппарате в виде контрдвигателя» [5, с. 374].

Выясняя границы величин ускорений, которые можно допускать во время космического путешествия

живых существ, Эсцо-Пельтри ссылается на свой опыт в обла-

108

сти авиации: «В моих аэропланах я снабжал пилотов упругим поясом, отрегулированным так, что

к концу его растяжения пилоты без труда могли переносить ускорение в 10 раз больше веса тела.

Таким образом, с этой стороны опасность будет устранена. Остается в силе вопрос о нагревании.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*