Александр Шаров - Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла
В таких далеких туманностях, оставляющих на фотопластинке лишь смутный маленький след, обнаружить какие-либо индикаторы расстояний, не только цефеиды, но и более яркие звезды-сверхгиганты, новые звезды, шаровые и рассеянные скопления, уже совершенно невозможно. Приходилось опираться на видимые звездные величины самих туманностей, полагая, что их истинные светимости достаточно близки. «Общим критерием расстояния, пригодным для всей наблюдаемой части Вселенной, являются полные светимости или, точнее говоря, функция светимости туманностей, т. е. их распределение по светимостям»,—указывал Хаббл. Он вновь берется за проблему светимостей туманностей и двумя способами решает ее. Теперь для проверки закона Хаббла требовались лучевые, скорости все более удаленных туманностей.
В 1936 г. Хьюмасон публикует данные для 100 туманностей и среди них для членов скоплений в Северной Короне, которое, как оказалось, удаляется со скоростью 21000 км/с. В Близнецах измерения дали скорости 23 000 и 24 000 км/с, Волопасе - 39 000 км/с. Рекордную скорость, 42 000 км/с, Хьюмасон измерил у одной из туманностей в скоплении Большой Медведицы. И по-прежнему закон Хаббла оставался в силе.
Но это было уже пределом. Когда на своих пластинках Хаббл нашел скопление в Гидре, еще более слабое и далекое, измерить лучевую скорость даже самой яркой туманности в нем Хьюмасон не смог.
Итак, свои возможности в деле измерения лучевых скоростей 100-дюймовый рефлектор исчерпал полностью. А глубокий вопрос о природе красного смещения в спектрах галактик продолжал оставаться открытым. Необходимо было понять, действительно ли красное смещение вызвано эффектом Доплера, связанным с расширением Вселенной, или, быть может, с каким-то другим неизвестным физическим эффектом, например, «старением» фотонов во время их длительного путешествия в пространстве. В случае реальности расширения, предсказываемого космологической теорией, следовало выявить релятивистские эффекты и определить параметры космологической модели.
В теории расширяющейся Вселенной есть модель, которая выделяется среди других своими свойствами. Прежде всего в ней считается, что Λ-член равен нулю, т. е. силы отталкивания, введенные Эйнштейном для построения теории статической Вселенной, отсутствуют. Модели без Л-члена делятся на открытые и закрытые. В моделях первого типа плотность вещества во Вселенной мала и силы тяготения не в состоянии полностью затормозить разлет вещества — расширение продолжается неограниченно. В закрытых моделях плотность велика, тяготение сильно и останавливает расширение, заставляя затем Вселенную сжиматься. Закрытые модели обладают замкнутым пространством, в открытых моделях пространство бесконечно и в нем справедлива геометрия Лобачевского. Пограничное значение средней плотности вещества во Вселенной получило название критической. Оно определяется постоянной Хаблла и при H = 500 км/(с∙Мпк) примерно равно 5∙10-28 г/см3. Модель с критической плотностью выделена и тем, что ее трехмерное пространство характеризуется геометрией Евклида.
В моделях расширяющейся Вселенной раньше галактики были ближе друг к другу, а средняя плотность превышала сегодняшнюю. Значит тогда скорость взаимного удаления галактик оказывалась больше и мы с неизбежностью должны прийти к выводу, что в прошлом был момент бесконечной плотности. (Тогда ни галактик, ни отдельных небесных тел еще не существовало, они возникли позже в ходе расширения Вселенной.) Этот момент формально бесконечной плотности вещества, момент начала расширения, называют космологической сингулярностью. В космологической сингулярности произошел «Большой взрыв», давший начальные скорости разлета вещества Вселенной.
Как давно это было? Оценку дать нетрудно. Если бы две галактики все время удалялись друг от друга с постоянной скоростью, то, поделив расстояние между ними на скорость, мы бы получили время, когда они находились в одном месте. Учтя же закон Хаббла V = Hr, найдем, что этот промежуток времени равен 1/H, независимо от расстояния. Таким образом, если бы скорость удаления каждой галактики не тормозилась тяготением, в момент 1/H они все находились бы в одном месте. На самом же деле в прошлом скорости были большие. Но, если плотность вещества во Вселенной не слишком превышает критическую, а это именно так, торможение по порядку величины сделанную оценку времени не изменит. Подставив значение H, найденное Хабблом, получим, что время 1/H ≈ 2∙109 лет.
На рубеже двадцатых и тридцатых годов по радиоактивному распаду урана в земной коре был оценен, возраст нашей планеты — от двух до шести миллиардов лет. По относительному количеству изотопов урана 235 и 238 в горных породах Резерфорд также нашел, что возраст Земли около 3 миллиардов лет. В 1930 г. Эддингтон заметил, что время 1/H очень близко к возрасту радиоактивных элементов и сильно отличается от оценок возраста звезд. Тогда возраст звезд считался гораздо большим — около тысячи миллиардов лет. Так следовало из предположения, что источником энергии звезд служит превращение их массы в излучение. Причем принималось, что практически вся масса может перейти в излучение по формуле Эйнштейна Е = mc2. Дополнительные аргументы в пользу столь долгого существования звезд следовали из сделанных Джинсом оценок времени динамических процессов в звездных системах.
Возникло знаменитое противоречие между двумя шкалами времени. Ведь если звезды существуют сотни миллиардов лет, их возраст должен быть намного больше возраста Вселенной!
Как примирить столь разные оценки?
Космологи пытались «растянуть» время расширения Вселенной, считая, что Λ-член все же не равен нулю. С другой стороны, к концу тридцатых годов стало ясно, что источником излучения звезд служит ядерная энергия. В излучение переходит только малая доля всей массы звезды и поэтому оценку возраста звезд следует уменьшить на два порядка. Тогда же, после более детального исследования галактик, отпали и аргументы Джинса о необычайно длительном существовании звездных систем. Спустя еще некоторое время изменилась и оценка продолжительности расширения Вселенной, так как выяснилось, что значение Я, определенное Хабблом, сильно завышено. В конце концов все явные противоречия между разными «космическими шкалами» исчезли, хотя некоторые вопросы все же остались.
В годы второй мировой войны, оглядываясь на то, что сделал он сам и его коллеги за прошедшее десятилетие, Хаббл так сформулировал взаимоотношения теории и наблюдений: «Математики имеют дело с возможными мирами, с бесконечным числом логически последовательных систем. Наблюдатели исследуют один единственный мир, в котором мы живем. Между ними находится теоретик. Он изучает возможные миры, но только те, которые совместимы с информацией, получаемой наблюдателями. Другими словами, теория пытается выделить минимальное число возможных миров, обязанное включать и существующий обитаемый нами мир. Затем наблюдатель, обладая новой фактической информацией, пытается уменьшить их перечень еще больше. Так и происходит, наблюдения и теория вместе движутся вперед к общей цели — познанию структуры и поведения физической Вселенной».