KnigaRead.com/
KnigaRead.com » Документальные книги » Биографии и Мемуары » В. Буринский - Луи Дагер и Жозеф Ньепс. Их жизнь и открытия в связи с историей развития фотографии

В. Буринский - Луи Дагер и Жозеф Ньепс. Их жизнь и открытия в связи с историей развития фотографии

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн В. Буринский, "Луи Дагер и Жозеф Ньепс. Их жизнь и открытия в связи с историей развития фотографии" бесплатно, без регистрации.
Перейти на страницу:

Из предыдущего ясно, что при съемке предмета каждая точка последнего соответствует на изображении не точке ее, но небольшому кружку и освещение таких кружков уменьшается от центра к окружности, а размеры их различны, в зависимости от величины отверстия чечевицы. Чем эти кружки меньше, тем и изображение яснее; отсюда пошло применение к объективам диафрагм или дисков, имеющих в середине круглое отверстие и приставляемых к чечевице.

Диафрагма задерживает периферические лучи и таким образом уменьшает аберрацию. Но давая более ясное изображение, она ослабляет освещение, что замедляет светописный снимок. Кроме того, диафрагма несколько искажает очертания предмета – так называемое явление растягивания. В результате стороны квадрата являются на изображении выпуклыми, когда диафрагма помещается впереди чечевицы и, наоборот, вогнутыми, когда она стоит позади ее.

Это явление старались устранить, помещая диафрагму между двумя совершенно одинаковыми чечевицами и таким образом нейтрализуя оба вида растяжения изображения.

Впоследствии вместо снабжения объективов диафрагмами стали прибегать к устройству так называемых апланатов, с целью устранения сферической аберрации. Но немыслимо создать чечевицу, кривизна которой удовлетворяла бы данному требованию. Поэтому со времени французского инженера-оптика Шарля Шевалье стали комбинировать чечевицы различных радиусов, чтобы получить одну апланатическую. Эти различные чечевицы или склеивают между собой или помещают на определенном расстоянии одна от другой.

Сегодня известны и используются: ортоскопический объектив Петяваля в Вене; многофокусный объектив Дерожи; триплет Дальмейера, представляющий видоизменение предыдущего; апланат Штейнгеля; эврискон Фогтлендера и другие. Все эти апланаты более или менее удачно разрешают задачу устранения аберрации.

Недостаток апланатов заключается в том, что они не дают достаточной глубины фокуса. Этим термином называют пространство между центральным и периферическим фокусами световых лучей, проходящих через чечевицу.

Глубина фокуса особенно важна при снимках объемных предметов и позволяет добиваться для всех одинаковой ясности изображения. Апланаты же, давая вполне ясное изображение одной плоскости, для других дают освещение не одинаковой силы.

Из всего сказанного очевидно, что при выборе объектива нужно обращать внимание на очень многие условия, тем более что некоторые апланаты, как мы знаем, имеют свойство искажать изображение, производя вышеупомянутые растяжения. Поэтому объективы различаются по их назначению: для портретов, ландшафтов, уличных зданий и монументов, смотря по величине полей и в зависимости от требуемой большей или меньшей скорости снимка.

Важно учитывать также и явление хроматической аберрации. Различные лучи призматического спектра преломляются неодинаково. Если предмет освещен красным светом, то его изображение появляется на большем расстоянии от чечевицы, чем при освещении того же предмета фиолетовым цветом. Поэтому предмет, освещенный белым светом, дает собственно не одно изображение, но столько, сколько имеется различных световых лучей спектра. Этим объясняется, что изображение имеет то розоватый, то фиолетовый оттенок, в зависимости от расстояния между экраном и чечевицей.

Хроматическую аберрацию стараются устранить ахроматизацией стекол, соединяя две различные чечевицы, собирательную из кронгласа и рассеивающую из флинтгласа, чтобы привести фокусы красных и фиолетовых лучей к фокусу желтых, наиболее ярких. Достигнутый таким образом ахроматизм является достаточным для зрительных труб и микроскопа, но неудовлетворительным для светописного аппарата.

Лучи, обладающие наиболее сильным химическим действием, отличаются от тех, что сильнее всего действуют на зрение. Иначе сказать, фокусы осветительных и химических лучей не совпадают между собою. Поэтому светописные объективы должны быть устроены так, чтобы эти фокусы совпадали, иначе ясное и отчетливое изображение, полученное на полированном стекле, окажется неясным на светочувствительной поверхности; надлежащее сочетание чечевиц позволяет устранить и этот недостаток.

Труба, в которую заключен объектив, с наружной стороны имеет легко закрывающуюся крышку, называемую обтуратором.

Приступая к съемке изображения, помещают его в фокусе, глядя на матовое стекло и по мере надобности передвигая объектив при помощи особо приспособленного для этой цели винта. Затем на место матового стекла помещают так называемое негативное шасси, т. е. рамку, заключающую в себе приготовленную светочувствительную пластинку, и открывают крышку объектива. Когда время пребывания шасси в камере признается достаточным, крышку опять надевают на трубу объектива, а шасси вынимают и уносят в лабораторию. Для ускорения этой процедуры необходимо, чтобы механизм открывания крышек срабатывал без задержек, автоматически. Таковы пневматические обтураторы.

О несомненном и значительном влиянии света на многие вещества (причем последние подвергаются очевидным изменениям в их наружном виде) человечество знало уже в самые отдаленные времена. Древним было известно, например, что краски написанных маслом картин изменяются и в конце концов обесцвечиваются при действии на них продолжительного света. Было замечено, что такому же обесцвечиванию солнцем подвергался асфальт, плавающий на поверхности Мертвого моря, а также различные смолы, употреблявшиеся в Египте для бальзамирования трупов.

Алхимикам средних веков влияние света на различные химические вещества было известно лучше, чем древним, и такие свойства света возбуждали в них надежды на открытие философского камня, способного превращать в золото все металлы.

Так считал и алхимик Фабрициус, открывший на основе разысканий Араго хлористое серебро, названное им роговою луною. Тогда же было замечено, что вещество это чернеет под влиянием света и на почерневших местах появляется металлическое серебро, т. е. что свет обладает способностью восстановления металла из его солей. Позднее стало известно, что это восстанавливающее свойство света обнаруживается не на одной хлористой, но и на всех солях серебра – бромистой, йодистой и т. д. Соли других металлов также подвергаются восстанавливающей силе солнца, но это явление требует гораздо большего времени, чем то, которое необходимо для солей серебра. Так, двухромовокислый калий обращается при действии света в окись хрома; то же происходит с азотнокислым ураном.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*